36 research outputs found

    Yeast Mitochondrial Biogenesis: A Role for the PUF RNA-Binding Protein Puf3p in mRNA Localization

    Get PDF
    The asymmetric localization of mRNA plays an important role in coordinating posttranscriptional events in eukaryotic cells. We investigated the peripheral mitochondrial localization of nuclear-encoded mRNAs (MLR) in various conditions in which the mRNA binding protein context and the translation efficiency were altered. We identified Puf3p, a Pumilio family RNA-binding protein, as the first trans-acting factor controlling the MLR phenomenon. This allowed the characterization of two classes of genes whose mRNAs are translated to the vicinity of mitochondria. Class I mRNAs (256 genes) have a Puf3p binding motif in their 3'UTR region and many of them have their MLR properties deeply affected by PUF3 deletion. Conversely, mutations in the Puf3p binding motif alter the mitochondrial localization of BCS1 mRNA. Class II mRNAs (224 genes) have no Puf3p binding site and their asymmetric localization is not affected by the absence of PUF3. In agreement with a co-translational import process, we observed that the presence of puromycin loosens the interactions between most of the MLR-mRNAs and mitochondria. Unexpectedly, cycloheximide, supposed to solidify translational complexes, turned out to destabilize a class of mRNA-mitochondria interactions. Classes I and II mRNAs, which are therefore transported to the mitochondria through different pathways, correlated with different functional modules. Indeed, Class I genes code principally for the assembly factors of respiratory chain complexes and the mitochondrial translation machinery (ribosomes and translation regulators). Class II genes encode proteins of the respiratory chain or proteins involved in metabolic pathways. Thus, MLR, which is intimately linked to translation control, and the activity of mRNA-binding proteins like Puf3p, may provide the conditions for a fine spatiotemporal control of mitochondrial protein import and mitochondrial protein complex assembly. This work therefore provides new openings for the global study of mitochondria biogenesis

    Yap5 Competes With Hap4 for the Regulation of Iron Homeostasis Genes in the Human Pathogen Candida glabrata

    No full text
    International audienceThe CCAAT-binding complex (CBC) is a conserved heterotrimeric transcription factor which, in fungi, requires additional regulatory subunits to act on transcription. In the pathogenic yeast Candida glabrata, CBC has a dual role. Together with the Hap4 regulatory subunit, it activates the expression of genes involved in respiration upon growth with non-fermentable carbon sources, while its association with the Yap5 regulatory subunit is required for the activation of iron tolerance genes in response to iron excess. In the present work, we investigated further the interplay between CBC, Hap4 and Yap5. We showed that Yap5 regulation requires a specific Yap Response Element in the promoter of its target gene GRX4 and that the presence of Yap5 considerably strengthens the binding of CBC to the promoters of iron tolerance genes. Chromatin immunoprecipitation (ChIP) and transcriptome experiments showed that Hap4 can also bind these promoters but has no impact on the expression of those genes when Yap5 is present. In the absence of Yap5 however, GRX4 is constitutively regulated by Hap4, similarly to the genes involved in respiration. Our results suggest that the distinction between the two types of CBC targets in C. glabrata is mainly due to the dependency of Yap5 for very specific DNA sequences and to the competition between Hap4 and Yap5 at the promoter of the iron tolerance genes

    CORSEN, a new software dedicated to microscope-based 3D distance measurements: mRNA–mitochondria distance, from single-cell to population analyses

    No full text
    Recent improvements in microscopy technology allow detection of single molecules of RNA, but tools for large-scale automatic analyses of particle distributions are lacking. An increasing number of imaging studies emphasize the importance of mRNA localization in the definition of cell territory or the biogenesis of cell compartments. CORSEN is a new tool dedicated to three-dimensional (3D) distance measurements from imaging experiments especially developed to access the minimal distance between RNA molecules and cellular compartment markers. CORSEN includes a 3D segmentation algorithm allowing the extraction and the characterization of the cellular objects to be processed—surface determination, aggregate decomposition—for minimal distance calculations. CORSEN's main contribution lies in exploratory statistical analysis, cell population characterization, and high-throughput assays that are made possible by the implementation of a batch process analysis. We highlighted CORSEN's utility for the study of relative positions of mRNA molecules and mitochondria: CORSEN clearly discriminates mRNA localized to the vicinity of mitochondria from those that are translated on free cytoplasmic polysomes. Moreover, it quantifies the cell-to-cell variations of mRNA localization and emphasizes the necessity for statistical approaches. This method can be extended to assess the evolution of the distance between specific mRNAs and other cellular structures in different cellular contexts. CORSEN was designed for the biologist community with the concern to provide an easy-to-use and highly flexible tool that can be applied for diverse distance quantification issues

    The CCAAT-Binding Complex Controls Respiratory Gene Expression and Iron Homeostasis in Candida Glabrata

    No full text
    International audienceThe CCAAT-binding complex (CBC) is a heterotrimeric transcription factor which is widely conserved in eukaryotes. In the model yeast S. cerevisiae, CBC positively controls the expression of respiratory pathway genes. This role involves interactions with the regulatory subunit Hap4. In many pathogenic fungi, CBC interacts with the HapX regulatory subunit to control iron homeostasis. HapX is a bZIP protein which only shares with Hap4 the Hap4Like domain (Hap4L) required for its interaction with CBC. Here, we show that CBC has a dual role in the pathogenic yeast C. glabrata. It is required, along with Hap4, for the constitutive expression of respiratory genes and it is also essential for the iron stress response, which is mediated by the Yap5 bZIP transcription factor. Interestingly, Yap5 contains a vestigial Hap4L domain. The mutagenesis of this domain severely reduced Yap5 binding to its targets and compromised its interaction with Hap5. Hence, Yap5, like HapX in other species, acts as a CBC regulatory subunit in the regulation of iron stress response. This work reveals new aspects of iron homeostasis in C. glabrata and of the evolution of the role of CBC and Hap4L-bZIP proteins in this process

    Yap7 is a transcriptional repressor of nitric oxide oxidase in yeasts, which arose from neofunctionalization after whole genome duplication

    No full text
    International audienceFlavohemoglobins are the main detoxifiers of nitric oxide (NO) in bacteria and fungi and are induced in response to nitrosative stress. In fungi, the flavohemoglobin encoding gene YHB1 is positively regulated by transcription factors which are activated upon NO exposure. In this study, we show that in the model yeast Saccharomyces cerevisiae and in the human pathogen Candida glabrata, the transcription factor Yap7 constitutively represses YHB1 by binding its promoter. Consequently, YAP7 deletion conferred high NO resistance to the cells. Co-immunoprecipitation experiments and mutant analyses indicated that Yap7 represses YHB1 by recruiting the transcriptional repressor Tup1. In S. cerevisiae, YHB1 repression also involves interaction of Yap7 with the Hap2/3/5 complex through a conserved Hap4-like-bZIP domain, but this interaction has been lost in C. glabrata. The evolutionary origin of this regulation was investigated by functional analyses of Yap7 and of its paralogue Yap5 in different yeast species. These analyses indicated that the negative regulation of YHB1 by Yap7 arose by neofunctionalization after the whole genome duplication which led to the C. glabrata and S. cerevisiae extant species. This work describes a new aspect of the regulation of fungal nitric oxidase and provides detailed insights into its functioning and evolution

    Yap7 is a transcriptional repressor of nitric oxide oxidase in yeasts, which arose from neofunctionalization after whole genome duplication

    No full text
    International audienceFlavohemoglobins are the main detoxifiers of nitric oxide (NO) in bacteria and fungi and are induced in response to nitrosative stress. In fungi, the flavohemoglobin encoding gene YHB1 is positively regulated by transcription factors which are activated upon NO exposure. In this study, we show that in the model yeast Saccharomyces cerevisiae and in the human pathogen Candida glabrata, the transcription factor Yap7 constitutively represses YHB1 by binding its promoter. Consequently, YAP7 deletion conferred high NO resistance to the cells. Co-immunoprecipitation experiments and mutant analyses indicated that Yap7 represses YHB1 by recruiting the transcriptional repressor Tup1. In S. cerevisiae, YHB1 repression also involves interaction of Yap7 with the Hap2/3/5 complex through a conserved Hap4-like-bZIP domain, but this interaction has been lost in C. glabrata. The evolutionary origin of this regulation was investigated by functional analyses of Yap7 and of its paralogue Yap5 in different yeast species. These analyses indicated that the negative regulation of YHB1 by Yap7 arose by neofunctionalization after the whole genome duplication which led to the C. glabrata and S. cerevisiae extant species. This work describes a new aspect of the regulation of fungal nitric oxidase and provides detailed insights into its functioning and evolution

    Thermal conditioning of quail embryos has transgenerational and reversible long-term effects

    No full text
    International audienceBackground In the current context of global warming, thermal manipulation of avian embryos has received increasing attention as a strategy to promote heat tolerance in avian species by simply increasing the egg incubation temperature. However, because of their likely epigenetic origin, thermal manipulation effects may last more than one generation with consequences for the poultry industry. In this work, a multigenerational and transgenerational analysis of thermal manipulation during embryogenesis was performed to uncover the long-term effects of such procedure. Results Thermal manipulation repeated during 4 generations had an effect on hatchability, body weight, and weight of eggs laid in Japanese quails, with some effects increasing in importance over generations. Moreover, the effects on body weight and egg weight could be transmitted transgenerationally, suggesting non-genetic inheritance mechanisms. This hypothesis is reinforced by the observed reversion of the effect on growth after five unexposed generations. Interestingly, a beneficial effect of thermal manipulation on heat tolerance was observed a few days after hatching, but this effect was not transgenerational. Conclusions Our multigenerational study showed that thermal conditioning of quail embryos has a beneficial effect on post-hatch heat tolerance hampered by transgenerational but reversible defects on growth. Assuming that no genetic variability underlies these changes, this study provides the first demonstration of epigenetic inheritance of traits induced by environmental temperature modification associated with long-term impacts in an avian species
    corecore