1,126 research outputs found

    The large cosmological constant approximation to classical and quantum gravity: model examples

    Get PDF
    We have recently introduced an approach for studying perturbatively classical and quantum canonical general relativity. The perturbative technique appears to preserve many of the attractive features of the non-perturbative quantization approach based on Ashtekar's new variables and spin networks. With this approach one can find perturbatively classical observables (quantities that have vanishing Poisson brackets with the constraints) and quantum states (states that are annihilated by the quantum constraints). The relative ease with which the technique appears to deal with these traditionally hard problems opens several questions about how relevant the results produced can possibly be. Among the questions is the issue of how useful are results for large values of the cosmological constant and how the approach can deal with several pathologies that are expected to be present in the canonical approach to quantum gravity. With the aim of clarifying these points, and to make our construction as explicit as possible, we study its application in several simple models. We consider Bianchi cosmologies, the asymmetric top, the coupled harmonic oscillators with constant energy density and a simple quantum mechanical system with two Hamiltonian constraints. We find that the technique satisfactorily deals with the pathologies of these models and offers promise for finding (at least some) results even for small values of the cosmological constant. Finally, we briefly sketch how the method would operate in the full four dimensional quantum general relativity case.Comment: 21 pages, RevTex, 2 figures with epsfi

    Quantum Spin Dynamics VIII. The Master Constraint

    Get PDF
    Recently the Master Constraint Programme (MCP) for Loop Quantum Gravity (LQG) was launched which replaces the infinite number of Hamiltonian constraints by a single Master constraint. The MCP is designed to overcome the complications associated with the non -- Lie -- algebra structure of the Dirac algebra of Hamiltonian constraints and was successfully tested in various field theory models. For the case of 3+1 gravity itself, so far only a positive quadratic form for the Master Constraint Operator was derived. In this paper we close this gap and prove that the quadratic form is closable and thus stems from a unique self -- adjoint Master Constraint Operator. The proof rests on a simple feature of the general pattern according to which Hamiltonian constraints in LQG are constructed and thus extends to arbitrary matter coupling and holds for any metric signature. With this result the existence of a physical Hilbert space for LQG is established by standard spectral analysis.Comment: 19p, no figure

    Testing the Master Constraint Programme for Loop Quantum Gravity III. SL(2,R) Models

    Full text link
    This is the third paper in our series of five in which we test the Master Constraint Programme for solving the Hamiltonian constraint in Loop Quantum Gravity. In this work we analyze models which, despite the fact that the phase space is finite dimensional, are much more complicated than in the second paper: These are systems with an SL(2,\Rl) gauge symmetry and the complications arise because non -- compact semisimple Lie groups are not amenable (have no finite translation invariant measure). This leads to severe obstacles in the refined algebraic quantization programme (group averaging) and we see a trace of that in the fact that the spectrum of the Master Constraint does not contain the point zero. However, the minimum of the spectrum is of order â„Ź2\hbar^2 which can be interpreted as a normal ordering constant arising from first class constraints (while second class systems lead to â„Ź\hbar normal ordering constants). The physical Hilbert space can then be be obtained after subtracting this normal ordering correction.Comment: 33 pages, no figure

    A Path-integral for the Master Constraint of Loop Quantum Gravity

    Full text link
    In the present paper, we start from the canonical theory of loop quantum gravity and the master constraint programme. The physical inner product is expressed by using the group averaging technique for a single self-adjoint master constraint operator. By the standard technique of skeletonization and the coherent state path-integral, we derive a path-integral formula from the group averaging for the master constraint operator. Our derivation in the present paper suggests there exists a direct link connecting the canonical Loop quantum gravity with a path-integral quantization or a spin-foam model of General Relativity.Comment: 19 page

    Real and complex connections for canonical gravity

    Full text link
    Both real and complex connections have been used for canonical gravity: the complex connection has SL(2,C) as gauge group, while the real connection has SU(2) as gauge group. We show that there is an arbitrary parameter β\beta which enters in the definition of the real connection, in the Poisson brackets, and therefore in the scale of the discrete spectra one finds for areas and volumes in the corresponding quantum theory. A value for β\beta could be could be singled out in the quantum theory by the Hamiltonian constraint, or by the rotation to the complex Ashtekar connection.Comment: 8 pages, RevTeX, no figure

    Towards the QFT on Curved Spacetime Limit of QGR. I: A General Scheme

    Get PDF
    In this article and a companion paper we address the question of how one might obtain the semiclassical limit of ordinary matter quantum fields (QFT) propagating on curved spacetimes (CST) from full fledged Quantum General Relativity (QGR), starting from first principles. We stress that we do not claim to have a satisfactory answer to this question, rather our intention is to ignite a discussion by displaying the problems that have to be solved when carrying out such a program. In the present paper we propose a scheme that one might follow in order to arrive at such a limit. We discuss the technical and conceptual problems that arise in doing so and how they can be solved in principle. As to be expected, completely new issues arise due to the fact that QGR is a background independent theory. For instance, fundamentally the notion of a photon involves not only the Maxwell quantum field but also the metric operator - in a sense, there is no photon vacuum state but a "photon vacuum operator"! While in this first paper we focus on conceptual and abstract aspects, for instance the definition of (fundamental) n-particle states (e.g. photons), in the second paper we perform detailed calculations including, among other things, coherent state expectation values and propagation on random lattices. These calculations serve as an illustration of how far one can get with present mathematical techniques. Although they result in detailed predictions for the size of first quantum corrections such as the gamma-ray burst effect, these predictions should not be taken too seriously because a) the calculations are carried out at the kinematical level only and b) while we can classify the amount of freedom in our constructions, the analysis of the physical significance of possible choices has just begun.Comment: LaTeX, 47 p., 3 figure

    Automated Termination Proofs for Logic Programs by Term Rewriting

    Full text link
    There are two kinds of approaches for termination analysis of logic programs: "transformational" and "direct" ones. Direct approaches prove termination directly on the basis of the logic program. Transformational approaches transform a logic program into a term rewrite system (TRS) and then analyze termination of the resulting TRS instead. Thus, transformational approaches make all methods previously developed for TRSs available for logic programs as well. However, the applicability of most existing transformations is quite restricted, as they can only be used for certain subclasses of logic programs. (Most of them are restricted to well-moded programs.) In this paper we improve these transformations such that they become applicable for any definite logic program. To simulate the behavior of logic programs by TRSs, we slightly modify the notion of rewriting by permitting infinite terms. We show that our transformation results in TRSs which are indeed suitable for automated termination analysis. In contrast to most other methods for termination of logic programs, our technique is also sound for logic programming without occur check, which is typically used in practice. We implemented our approach in the termination prover AProVE and successfully evaluated it on a large collection of examples.Comment: 49 page

    On the Relation between Operator Constraint --, Master Constraint --, Reduced Phase Space --, and Path Integral Quantisation

    Full text link
    Path integral formulations for gauge theories must start from the canonical formulation in order to obtain the correct measure. A possible avenue to derive it is to start from the reduced phase space formulation. In this article we review this rather involved procedure in full generality. Moreover, we demonstrate that the reduced phase space path integral formulation formally agrees with the Dirac's operator constraint quantisation and, more specifically, with the Master constraint quantisation for first class constraints. For first class constraints with non trivial structure functions the equivalence can only be established by passing to Abelian(ised) constraints which is always possible locally in phase space. Generically, the correct configuration space path integral measure deviates from the exponential of the Lagrangian action. The corrections are especially severe if the theory suffers from second class secondary constraints. In a companion paper we compute these corrections for the Holst and Plebanski formulations of GR on which current spin foam models are based.Comment: 43 page

    The Phoenix Project: Master Constraint Programme for Loop Quantum Gravity

    Full text link
    The Hamiltonian constraint remains the major unsolved problem in Loop Quantum Gravity (LQG). Seven years ago a mathematically consistent candidate Hamiltonian constraint has been proposed but there are still several unsettled questions which concern the algebra of commutators among smeared Hamiltonian constraints which must be faced in order to make progress. In this paper we propose a solution to this set of problems based on the so-called {\bf Master Constraint} which combines the smeared Hamiltonian constraints for all smearing functions into a single constraint. If certain mathematical conditions, which still have to be proved, hold, then not only the problems with the commutator algebra could disappear, also chances are good that one can control the solution space and the (quantum) Dirac observables of LQG. Even a decision on whether the theory has the correct classical limit and a connection with the path integral (or spin foam) formulation could be in reach. While these are exciting possibilities, we should warn the reader from the outset that, since the proposal is, to the best of our knowledge, completely new and has been barely tested in solvable models, there might be caveats which we are presently unaware of and render the whole {\bf Master Constraint Programme} obsolete. Thus, this paper should really be viewed as a proposal only, rather than a presentation of hard results, which however we intend to supply in future submissions.Comment: LATEX, uses AMSTE
    • …
    corecore