1,521 research outputs found

    Finite states in four dimensional quantum gravity. The isotropic minisuperspace Asktekar--Klein--Gordon model

    Get PDF
    In this paper we construct the generalized Kodama state for the case of a Klein--Gordon scalar field coupled to Ashtekar variables in isotropic minisuperspace by a new method. The criterion for finiteness of the state stems from a minisuperspace reduction of the quantized full theory, rather than the conventional techniques of reduction prior to quantization. We then provide a possible route to the reproduction of a semiclassical limit via these states. This is the result of a new principle of the semiclassical-quantum correspondence (SQC), introduced in the first paper in this series. Lastly, we examine the solution to the minisuperspace case at the semiclassical level for an isotropic CDJ matrix neglecting any quantum corrections and examine some of the implications in relation to results from previous authors on semiclassical orbits of spacetime, including inflation. It is suggested that the application of nonperturbative quantum gravity, by way of the SQC, might potentially lead to some predictions testable below the Planck scale.Comment: 26 pages. Accepted for publication by Class. Quantum Grav. journa

    Sun-Earth Day - Teaching Heliophysics Through Education Technology

    Get PDF
    Sun-Earth Day (SED) is an Education and Outreach program supported by the U.S, National Aeronautics and Space Administration (NASA). The intent of the program is to teach students and the general public about Heliophysics (the science of the study of the Sun, how it varies, and how solar dynamics affect the rest of the solar system, especially the Earth). The program was begun ten years ago. Each year since that time a particular day has been designated as "Sun-Earth Day ,,. Usually the day of the spring equinox (March 20 or 21) is Sun-Earth Day, but other days have been used as well. Each year a theme is chosen relating to Heliophysics and events reflecting that theme are planned not only for Sun-Earth Day, but for the entire year. From the very beginning educational technology was emphasized in the events in order to effectively reach wide audiences with the SED message. The main approach has been to have a "webcast" related to each year's theme, often from a location that supports the theme as well. For example, a webcast took place from the Mayan pyramids at Chichen Itza, Mexico to highlight the theme of "Ancient Observatories, Timeless Knowledge". Webcasts were not the only technology employed, however. Many of the themes centered on the dynamic nature of the Sun and the effects that solar storms can have on interplanetary space and in our day-to-day life on Earth. Activities for tracking when solar storms happen and how they affect the Earth were developed and brought together in an educational package called Space Weather Action Centers. This project is explained in more detail in another presentation in this session being given by Norma Teresinha Oliveira Reis. Recent Sun-Earth Days have utilized "social networking" technologies to reach widespread groups on the internet. Podcasts, Vodcasts, Facebook, Twitter, and Second Life are the types of network technologies being employed now. The NASA Distance learning Network is another method for bringing Sun-Earth Day events and training to widespread educators and classrooms in order to magnify the reach of Sun-Earth Day. Examples of the technologies will be shown along with an assessment of their effectiveness

    Synoptic observations of Jupiter's radio emissions: Average Statistical properties observed by Voyager

    Get PDF
    Observations of Jupiter's low frequency radio emissions collected over one month intervals before and after each Voyager encounter were analyzed. Compilations of occurrence probability, average power flux density and average sense of circular polarization are presented as a function of central meridian longitude, phase of Io, and frequency. The results are compared with ground based observations. The necessary geometrical conditions are preferred polarization sense for Io-related decametric emission observed by Voyager from above both the dayside and nightside hemispheres are found to be essentially the same as are observed in Earth based studies. On the other hand, there is a clear local time dependence in the Io-independent decametric emission. Io appears to have an influence on average flux density of the emission down to below 2 MHz. The average power flux density spectrum of Jupiter's emission has a broad peak near 9MHz. Integration of the average spectrum over all frequencies gives a total radiated power for an isotropic source of 4 x 10 to the 11th power W

    SPASE: Current Uses, Tools, and Plans

    Get PDF
    The Space Physics Archive Search and Extract (SPASE) project is an international collaboration among Heliophysics (solar and space physics) groups concerned with data acquisition and archiving. Within this community there are a variety of old and new data centers, resident archives, "virtual observatories", etc. acquiring, holding, and distributing data. The main product of the SPASE group is an XML-based SPASE Data Model now in operational use to enable searches for and ultimate acquisition of data of interest to a researcher. The SPASE Data Model defines the content of resource descriptions (metadata). The intent is to describe all SCientifically usable Heliophysics data sets using the Data Model. Another product of the SPASE group, in collaboration with NASA's Virtual Observatories, is a set of tools and services which work with SPASE meta data. This includes Registry Services which can retrieve and render metadata using resource identifiers and facilitate the downloading of the data referenced by the meta data. The SPASE Data Model has also been used as a vocabulary in specialized data models. One example is the Heliophysics Event List Manager (HELM) model. The SPASE Data Model is also being expanded to provide the means for more detailed description of data sets with the aim of enabling more automated ingestion and use of the data through detailed format descriptions. The evolution is based on a number of lessons learned and feedback from our community. Some of the lessons learned are unique to Heliophysics, and some are common to the various data diSCiplines. We will discuss the present state of SPASE usage, the role the SPASE Data Model can play in speCialized data models and how we foresee the development direction in the future

    Finite states in four dimensional quantized gravity

    Full text link
    This is the first in a series of papers outlining an algorithm to explicitly construct finite quantum states of the full theory of gravity in Ashtekar variables. The algorithm is based upon extending some properties of a special state, the Kodama state for pure gravity with cosmological term, to matter-coupled models. We then illustrate a presciption for nonperturbatively constructing the generalized Kodama states, in preparation for subsequent works in this series. We also introduce the concept of the semiclassical-quantum correspondence (SQC). We express the quantum constraints of the full theory as a system of equations to be solved for the constituents of the `phase' of the wavefunction. Additionally, we provide a variety of representations of the generalized Kodama states including a generalization of the topological instanton term to include matter fields, for which we present arguments for the field-theoretical analogue of cohomology on infinite dimensional spaces. We demonstrate that the Dirac, reduced phase space and geometric quantization procedures are all equivalent for these generalized Kodama states as a natural consequence of the SQC. We relegate the method of the solution to the constraints and other associated ramifications of the generalized Kodama states to separate works.Comment: 42 pages: Accepted for publication by Class. Quantum Grav. journa

    Voyager 1 Planetary Radio Astronomy Observations Near Jupiter

    Get PDF
    Results are reported from the first low frequency radio receiver to be transported into the Jupiter magnetosphere. Dramatic new information was obtained both because Voyager was near or in Jupiter's radio emission sources and also because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio arcs, from above 30 MHz to about 1 MHz, occurred in patterns correlated with planetary longitude. A newly discovered kilometric wavelength radio source may relate to the plasma torus near Io's orbit. In situ wave resonances near closest approach define an electron density profile along the Voyager trajectory and form the basis for a map of the torus. Studies in progress are outlined briefly

    The AP-2 adaptor β2 appendage scaffolds alternate cargo endocytosis

    Get PDF
    The independently folded appendages of the large α and β2 subunits of the endocytic adaptor protein (AP)-2 complex coordinate proper assembly and operation of endocytic components during clathrin-mediated endocytosis. The β2 subunit appendage contains a common binding site for β-arrestin or the autosomal recessive hypercholesterolemia (ARH) protein. To determine the importance of this interaction surface in living cells, we used small interfering RNA-based gene silencing. The effect of extinguishing β2 subunit expression on the internalization of transferrin is considerably weaker than an AP-2 α subunit knockdown. We show the mild sorting defect is due to fortuitous substitution of the β2 chain with the closely related endogenous β1 subunit of the AP-1 adaptor complex. Simultaneous silencing of both β1 and β2 subunit transcripts recapitulates the strong α subunit RNA interference (RNAi) phenotype and results in loss of ARH from endocytic clathrin coats. An RNAi-insensitive β2-yellow fluorescent protein (YFP) expressed in the β1 + β2-silenced background restores cellular AP-2 levels, robust transferrin internalization, and ARH colocalization with cell surface clathrin. The importance of the β appendage platform subdomain over clathrin for precise deposition of ARH at clathrin assembly zones is revealed by a β2-YFP with a disrupted ARH binding interface, which does not restore ARH colocalization with clathrin. We also show a β-arrestin 1 mutant, which engages coated structures in the absence of any G protein-coupled receptor stimulation, colocalizes with β2-YFP and clathrin even in the absence of an operational clathrin binding sequence. These findings argue against ARH and β-arrestin binding to a site upon the β2 appendage platform that is later obstructed by polymerized clathrin. We conclude that ARH and β-arrestin depend on a privileged β2 appendage site for proper cargo recruitment to clathrin bud sites

    Proteomics reveals a core molecular response of Pseudomonas putida F1 to acute chromate challenge

    Get PDF
    BACKGROUND: Pseudomonas putida is a model organism for bioremediation because of its remarkable metabolic versatility, extensive biodegradative functions, and ubiquity in contaminated soil environments. To further the understanding of molecular pathways responding to the heavy metal chromium(VI) [Cr(VI)], the proteome of aerobically grown, Cr(VI)-stressed P. putida strain F1 was characterized within the context of two disparate nutritional environments: rich (LB) media and minimal (M9L) media containing lactate as the sole carbon source. RESULTS: Growth studies demonstrated that F1 sensitivity to Cr(VI) was impacted substantially by nutrient conditions, with a carbon-source-dependent hierarchy (lactate > glucose >> acetate) observed in minimal media. Two-dimensional HPLC-MS/MS was employed to identify differential proteome profiles generated in response to 1 mM chromate under LB and M9L growth conditions. The immediate response to Cr(VI) in LB-grown cells was up-regulation of proteins involved in inorganic ion transport, secondary metabolite biosynthesis and catabolism, and amino acid metabolism. By contrast, the chromate-responsive proteome derived under defined minimal growth conditions was characterized predominantly by up-regulated proteins related to cell envelope biogenesis, inorganic ion transport, and motility. TonB-dependent siderophore receptors involved in ferric iron acquisition and amino acid adenylation domains characterized up-regulated systems under LB-Cr(VI) conditions, while DNA repair proteins and systems scavenging sulfur from alternative sources (e.g., aliphatic sulfonates) tended to predominate the up-regulated proteome profile obtained under M9L-Cr(VI) conditions. CONCLUSIONS: Comparative analysis indicated that the core molecular response to chromate, irrespective of the nutritional conditions tested, comprised seven up-regulated proteins belonging to six different functional categories including transcription, inorganic ion transport/metabolism, and amino acid transport/metabolism. These proteins might potentially serve as indicators of chromate stress in natural microbial communities

    Conserved Quasilocal Quantities and General Covariant Theories in Two Dimensions

    Full text link
    General matterless--theories in 1+1 dimensions include dilaton gravity, Yang--Mills theory as well as non--Einsteinian gravity with dynamical torsion and higher power gravity, and even models of spherically symmetric d = 4 General Relativity. Their recent identification as special cases of 'Poisson--sigma--models' with simple general solution in an arbitrary gauge, allows a comprehensive discussion of the relation between the known absolutely conserved quantities in all those cases and Noether charges, resp. notions of quasilocal 'energy--momentum'. In contrast to Noether like quantities, quasilocal energy definitions require some sort of 'asymptotics' to allow an interpretation as a (gauge--independent) observable. Dilaton gravitation, although a little different in detail, shares this property with the other cases. We also present a simple generalization of the absolute conservation law for the case of interactions with matter of any type.Comment: 21 pages, LaTeX-fil
    corecore