123 research outputs found

    Co-tunneling current and shot noise in quantum dots

    Full text link
    We derive general expressions for the current and shot noise, taking into account non-Markovian memory effects. In generalization of previous approaches our theory is valid for arbitrary Coulomb interaction and coupling strength and is applicable to quantum dots and more complex systems like molecules. A diagrammatic expansion up to second-order in the coupling strength, taking into account co-tunneling processes, allows for a study of transport in a regime relevant to many experiments. As an example, we consider a single-level quantum dot, focusing on the Coulomb-blockade regime. We find super-Poissonian shot noise due to spin-flip co-tunneling processes at an energy scale different from the one expected from first-order calculations, with a sensitive dependence on the coupling strength.Comment: 4 pages, three figures, submitted to PR

    Heat shock inhibits lipopolysaccharide-induced tissue factor activity in human whole blood

    Get PDF
    Background During gram-negative sepsis, lipopolysaccharide (LPS) induces tissue factor expression on monocytes. The resulting disseminated intravascular coagulation leads to tissue ischemia and worsens the prognosis of septic patients. There are indications, that fever reduces the mortality of sepsis, the effect on tissue factor activity on monocytes is unknown. Therefore, we investigated whether heat shock modulates LPS-induced tissue factor activity in human blood. Methods Whole blood samples and leukocyte suspensions, respectively, from healthy probands (n = 12) were incubated with LPS for 2 hours under heat shock conditions (43°C) or control conditions (37°C), respectively. Subsequent to further 3 hours of incubation at 37°C the clotting time, a measure of tissue factor expression, was determined. Cell integrity was verified by trypan blue exclusion test and FACS analysis. Results Incubation of whole blood samples with LPS for 5 hours at normothermia resulted in a significant shortening of clotting time from 357 ± 108 sec to 82 ± 8 sec compared to samples incubated without LPS (n = 12; p 0.05). Similarly, heat shock treatment of leukocyte suspensions abolished the LPS-induced tissue factor activity. Clotting time was 73 ± 31 s, when cells were treated with LPS (100 ng/mL) under normothermic conditions, and 301 ± 118 s, when treated with LPS (100 ng/mL) and heat shock (n = 8, p < 0.05). Control experiments excluded cell damage as a potential cause of the observed heat shock effect. Conclusion Heat shock treatment inhibits LPS-induced tissue factor activity in human whole blood samples and isolated leukocytes

    Reply to the Editor

    Get PDF

    Strongly enhanced shot noise in chains of quantum dots

    Get PDF

    Cotunneling Current and Shot Noise in Quantum Dots

    Get PDF

    Super-poissonian noise, negative differential conductance, and relaxation effects in transport through molecules, quantum dots and nanotubes

    Get PDF
    We consider charge transport through a nanoscopic object, e.g. single molecules, short nanotubes, or quantum dots, that is weakly coupled to metallic electrodes. We account for several levels of the molecule/quantum dot with level-dependent coupling strengths, and allow for relaxation of the excited states. The current-voltage characteristics as well as the current noise are calculated within first-order perturbation expansion in the coupling strengths. For the case of asymmetric coupling to the leads we predict negative-differential-conductance accompanied with super-poissonian noise. Both effects are destroyed by fast relaxation processes. The non-monotonic behavior of the shot noise as a function of bias and relaxation rate reflects the details of the electronic structure and level-dependent coupling strengths.Comment: 8 pages, 7 figures, submitted to Phys. Rev. B, added reference

    Erratum to: ‘Early prediction of acute kidney injury after transapical and transaortic aortic valve implantation with urinary G1 cell cycle arrest biomarkers’

    Get PDF
    Background: Acute kidney injury (AKI) is a common complication following transcatheter aortic valve implantation (TAVI) leading to increased mortality and morbidity. Urinary G1 cell cycle arrest proteins TIMP-2 and IGFBP7 have recently been suggested as sensitive biomarkers for early detection of AKI in critically ill patients. However, the precise role of urinary TIMP-2 and IGFBP7 in patients undergoing TAVI is unknown. Methods: In a prospective observational trial, 40 patients undergoing TAVI (either transaortic or transapical) were enrolled. Serial measurements of TIMP-2 and IGFBP7 were performed in the early post interventional course. The primary clinical endpoint was the occurrence of AKI stage 2/3 according to the KDIGO classification. Results: Now we show, that ROC analyses of [TIMP-2]*[IGFBP7] on day one after TAVI reveals a sensitivity of 100 % and a specificity of 90 % for predicting AKI 2/3 (AUC 0.971, 95 % CI 0.914-1.0, SE 0.0299, p = 0.001, cut-off 1.03). In contrast, preoperative and postoperative serum creatinine levels as well as glomerular filtration rate (GFR) and perioperative change in GFR did not show any association with the development of AKI. Furthermore, [TIMP2]*[IGFBP7] remained stable in patients with AKI = 1, but its levels increased significantly as early as 24 h after TAVI in patients who developed AKI 2/3 in the further course (4.77 +/- 3.21 vs. 0.48 +/- 0.68, p = 0.022). Mean patients age was 81.2 +/- 5.6 years, 16 patients were male (40.0 %). 35 patients underwent transapical and five patients transaortic TAVI. 15 patients (37.5 %) developed any kind of AKI;eight patients (20 %) met the primary endpoint and seven patients required renal replacement therapy (RRT) within 72 h after surgery. Conclusion: Early elevation of urinary cell cycle arrest biomarkers after TAVI is associated with the development of postoperative AKI. [TIMP-2]*[ IGFBP7] provides an excellent diagnostic accuracy in the prediction of AKI that is superior to that of serum creatinine

    Shot noise in tunneling transport through molecules and quantum dots

    Full text link
    We consider electrical transport through single molecules coupled to metal electrodes via tunneling barriers. Approximating the molecule by the Anderson impurity model as the simplest model which includes Coulomb charging effects, we extend the ``orthodox'' theory to expand current and shot noise systematically order by order in the tunnel couplings. In particular, we show that a combined measurement of current and shot noise reveals detailed information of the system even in the weak-coupling limit, such as the ratio of the tunnel-coupling strengths of the molecule to the left and right electrode, and the presence of the Coulomb charging energy. Our analysis holds for single-level quantum dots as well.Comment: 8 page
    corecore