330 research outputs found

    Higher-spin strings and W minimal models

    Full text link
    We study the spectrum of physical states for higher-spin generalisations of string theory, based on two-dimensional theories with local spin-2 and spin-ss symmetries. We explore the relation of the resulting effective Virasoro string theories to certain WW minimal models. In particular, we show how the highest-weight states of the WW minimal models decompose into Virasoro primaries.Comment: 13 pages, CTP TAMU-43/93, KUL-TF-93/9

    Quantising Higher-spin String Theories

    Full text link
    In this paper, we examine the conditions under which a higher-spin string theory can be quantised. The quantisability is crucially dependent on the way in which the matter currents are realised at the classical level. In particular, we construct classical realisations for the W2,sW_{2,s} algebra, which is generated by a primary spin-ss current in addition to the energy-momentum tensor, and discuss the quantisation for s8s\le8. From these examples we see that quantum BRST operators can exist even when there is no quantum generalisation of the classical W2,sW_{2,s} algebra. Moreover, we find that there can be several inequivalent ways of quantising a given classical theory, leading to different BRST operators with inequivalent cohomologies. We discuss their relation to certain minimal models. We also consider the hierarchical embeddings of string theories proposed recently by Berkovits and Vafa, and show how the already-known WW strings provide examples of this phenomenon. Attempts to find higher-spin fermionic generalisations lead us to examine the whether classical BRST operators for W2,n2W_{2,{n\over 2}} (nn odd) algebras can exist. We find that even though such fermionic algebras close up to null fields, one cannot build nilpotent BRST operators, at least of the standard form.Comment: CTP TAMU-24/94, KUL-TF-94/11, SISSA-135/94/E

    Estimation of Timing Resolution for Very Fast Time-Of-Flight Detectors in Monte Carlo Simulations

    Get PDF
    In PET imaging the depth of absorption in the crystal contributes to the detection time uncertainty, which impacts the time resolution of the scatter. In addition, affects the nature of the timing distribution. It was found that when Photon Travel Spread (PTS) in the crystal is the only factor affecting the timing uncertainty, in which case, a Laplace kernel might describe the measured data, more accurately. It was shown that for crystals as thin as 20 mm the RMSE of the Laplace was smaller than that of a Normal. While when PTS is combined with an addition coincidence detection resolution (CDR) then, a Normal achieves better RMSE, but with dependency on the crystal size. Results in terms of CRC, of a simulated NEMA phantom, confirmed that reconstruction using a Laplace kernel can model the data better for thicker crystals

    Comparative evaluation of image reconstruction methods for the siemens PET-MR scanner using the stir library

    Get PDF
    With the introduction of Positron Emission Tomography - Magnetic Resonance (PET-MR) scanners the development of new algorithms and the comparison of the performance of different iterative reconstruction algorithms and the characteristics of the reconstructed images data is relevant. In this work, we perform a quantitative assessment of the currently used ordered subset (OS) algorithms for low-counts PET-MR data taken from a Siemens Biograph mMR scanner using the Software for Tomographic Image Reconstruction (STIR, stir.sf.net). A comparison has been performed in terms of bias and coefficient of variation (CoV). Within the STIR library different algorithms are available, such as Order Subsets Expectation Maximization (OSEM), OS Maximum A Posteriori One Step Late (OSMAPOSL) with Quadratic Prior (QP) and with Median Root Prior (MRP), OS Separable Paraboloidal Surrogate (OSSPS) with QP and Filtered Back-Projection (FBP). In addition, List Mode (LM) reconstruction is available. Corrections for attenuation, scatter and random events are performed using STIR instead of using the scanner. Data from the Hoffman brain phantom are acquired, processed and reconstructed. Clinical data from the thorax of a patient have also been reconstructed with the same algorithms. The number of subsets does not appreciably affect the bias nor the coefficient of variation (CoV=11%) at a fixed sub-iteration number. The percentage relative bias and CoV maximum values for OSMAPOSL-MRP are 10% and 15% at 360 s acquisition and 12% and 15% for the 36 s, whilst for OSMAPOSL-QP they are 6% and 16% for 360 s acquisition and 11% and 23% at 36 s and for OSEM 6% and 11% for the 360 s acquisition and 10% and 15% for the 36 s. Our findings demonstrate that when it comes to low-counts, noise and bias become significant. The methodology for reconstructing Siemens mMR data with STIR is included in the CCP-PET-MR website

    The BV-algebra structure of W_3 cohomology

    Get PDF
    We summarize some recent results obtained in collaboration with J. McCarthy on the spectrum of physical states in W3W_3 gravity coupled to c=2c=2 matter. We show that the space of physical states, defined as a semi-infinite (or BRST) cohomology of the W3W_3 algebra, carries the structure of a BV-algebra. This BV-algebra has a quotient which is isomorphic to the BV-algebra of polyvector fields on the base affine space of SL(3,C)SL(3,C). Details have appeared elsewhere. [Published in the proceedings of "Gursey Memorial Conference I: Strings and Symmetries," Istanbul, June 1994, eds. G. Aktas et al., Lect. Notes in Phys. 447, (Springer Verlag, Berlin, 1995)]Comment: 8 pages; uses macros tables.tex and amssym.def (version 2.1 or later

    Systematic Evaluation of the Impact of Involuntary Motion in Whole Body Dynamic PET

    Get PDF
    Involuntary patient motion can happen in dynamic whole body (DWB) PET due to long scanning times, which may cause inaccurate quantification of tissue parameters. To quantify the impact on Patlak parameters, we simulated dynamic data using patient-derived motion fields, systematically introducing the motion at different passes of the dynamic scan, both inter and intra-frame. Estimated parameters are compared against the ground truth. Results show that errors can be large, even for small motion. Caution is advised when quantitatively evaluating DWB-PET images, if any motion has been detected

    Формування теоретичної моделі геополітичного дискурсу у вітчизняній політичній думці кінця ХХ – початку ХХІ століття

    Get PDF
    У статті висвітлюються питання щодо започаткування новітньої дослідницької традиції геополітичного дискурсу у проблематиці вітчизняної політичної думки ХХ – початку ХХІ століття. Зазначено позиції провідних вітчизняних вчених щодо формування емпіричного та ідейно-теоретичного підґрунтя для утвердження цієї традиції політичного дослідження.The article considers the questions of the becoming of a new research tradition of geopolitical discourse in the topic of native political thought of the 20-th – the beginning of the 21-st century. The views of leading home scientists about the development of empirical, ideological and theoretical basis for the maintenance of this tradition of political research are pointed out

    Characterization of Knitted Coils for e-Textiles

    Get PDF
    Inductor coils are integrated in many wearable garments for EM wave screening, heating and health monitoring. This paper presents a critical evaluation of the inductor characteristics of circular weft knitted coils for applications in etextiles. Inductors are knitted using circular needles with thin insulated metal wire and yarn knitted together. The resulting helical coils are characterized as a function of number of turns, coil diameter, needle size and insulated metal wire material. The results are compared to wound coils. Simulations of the knitted and wound coils show close agreement with the experimental results and confirm a higher inductance for the knits compared to the wound coils with the same pitch between turns. The parasitic coil capacitance is higher in the knit due to the vertical legs of the stitches, absent in wound coils. Knits with thin Cu and Litz wires result in flexible and wearable textile coils

    Motion-corrected reconstruction of parametric images from dynamic PET data with the Synergistic Image Reconstruction Framework (SIRF)

    Get PDF
    Motion correction has been added to a PET-MR reconstruction tool, SIRF, by incorporating a registration package, NiftyReg. New functionality has been demonstrated in the context of estimating kinetic parameters in the left temporal lobe, comparing direct and indirect reconstructions and evaluating the impact of using motion correction.Principal component analysis was used to detect motion and to determine time frames, while STIR's parametric-OSEM was used to perform the motion-corrected direct parametric reconstruction.It was found that the variance in the left temporal lobe decreased when motion correction was performed, and the same was true of direct reconstructions compared to indirect.With SIRF, the entirety of the demonstrated functionality can be performed from a single Matlab or Python script

    The Large N 't Hooft Limit of Kazama-Suzuki Model

    Full text link
    We consider N=2 Kazama-Suzuki model on CP^N=SU(N+1)/SU(N)xU(1). It is known that the N=2 current algebra for the supersymmetric WZW model, at level k, is a nonlinear algebra. The N=2 W_3 algebra corresponding to N=2 was recovered from the generalized GKO coset construction previously. For N=4, we construct one of the higher spin currents, in N=2 W_5 algebra, with spins (2, 5/2, 5/2, 3). The self-coupling constant in the operator product expansion of this current and itself depends on N as well as k explicitly. We also observe a new higher spin primary current of spins (3, 7/2, 7/2, 4). From the behaviors of N=2, 4 cases, we expect the operator product expansion of the lowest higher spin current and itself in N=2 W_{N+1} algebra. By taking the large (N, k) limit on the various operator product expansions in components, we reproduce, at the linear order, the corresponding operator product expansions in N=2 classical W_{\infty}^{cl}[\lambda] algebra which is the asymptotic symmetry of the higher spin AdS_3 supergravity found recently.Comment: 44 pages; the two typos in the first paragraph of page 23 corrected and to appear in JHE
    corecore