85 research outputs found

    Planning LIS doctoral education around a focused theme: A report on the B2A Program.

    Get PDF
    This report discusses the Overcoming Barriers to Information Access (B2A) program, a doctoral cohort program at the University of Wisconsin-Milwaukee funded by the Institute for Museum and Library Services. The program has focused on educating the next generation of doctoral graduates in library and information science with an emphasis on the theme of overcoming barriers to information access. Fellows were provided resources to support their educational activities, research and instructional experiences. The principal investigator for the program and the B2A Fellows reflect on the challenges and the rewards of their experiences in the program. Key findings that emerged include the importance of community throughout the program and exposure to diverse perspectives. Although funding packages provide important resources to students, they do not buy extra time. The reflections provide insights into the doctoral student experience that can benefit other library and information science doctoral programs

    Continued need for non-human primate neuroscience research.

    Get PDF
    Neuroscience research in non-human primates (NHPs) has delivered fundamental knowledge about human brain function as well as some valuable therapies that have improved the lives of human patients with a variety of brain disorders. Research using NHPs, although it is facing serious challenges, continues to complement studies in human volunteers and patients, and will continue to be needed as the burdens of mental health problems and neurodegenerative diseases increase. At the same time, research into the 3Rs is helping to ameliorate the harms experienced by NHPs in experimental procedures, allowing the effective combination of optimal welfare conditions for the NHPs and high quality research

    Cerebral Arterial Stenoses and Stroke: Novel Features of Aicardi-Goutières Syndrome Caused by the Arg164X Mutation in SAMHD1 Are Associated with Altered Cytokine Expression

    Get PDF
    Aicardi-Goutières syndrome (AGS) is a rare inborn multisystemic disease, resembling intrauterine viral infection and resulting in psychomotor retardation, spasticity and chilblain-like skin lesions. Diagnostic criteria include intracerebral calcifications and elevated interferon-alpha and pterin levels in cerebrospinal fluid (CSF). We report on four adult siblings with unknown neurodegenerative disease presenting with cerebrovascular stenoses, stroke and glaucoma in childhood, two of whom died at the age of 40 and 29 years. Genome-wide homozygosity mapping identified 170 candidate genes embedded in a common haplotype of 8Mb on chromosome 20q11-13. Next generation sequencing of the entire region identified the c.490C>T (p.Arg164X) mutation in SAMHD1, a gene most recently described in AGS, on both alleles in all affected siblings. Clinical diagnosis of AGS was then confirmed by demonstrating intracerebral calcifications on cranial computed tomography in all siblings and elevated pterin levels in CSF in three of them. In patient fibroblasts, lack of SAMHD1 protein expression was associated with increased basal expression of IL8, while stimulated expression of IFNB1 was reduced. We conclude that cerebrovascular stenoses and stroke associated with the Arg164X mutation in SAMHD1 extend the phenotypic spectrum of AGS. The observed vascular changes most likely reflect a vasculitis caused by dysregulated inflammatory stress response. © 2010 Wiley-Liss, Inc

    Optical absorption in semiconductor quantum dots: Nonlocal effects

    Full text link
    The optical absorption of a single spherical semiconductor quantum dot in an electrical field is studied taking into account the nonlocal coupling between the field of the light and the polarizability of the semiconductor. These nonlocal effects lead to a small size anf field dependent shift and broadening of the excitonic resonance which may be of interest in future high precision experiments.Comment: 6 pages, 4 figure

    Chloroplast translational regulation uncovers nonessential photosynthesis genes as key players in plant cold acclimation

    Get PDF
    Plants evolved efficient multifaceted acclimation strategies to cope with low temperatures. Chloroplasts respond to temperature stimuli and participate in temperature sensing and acclimation. However, very little is known about the involvement of chloroplast genes and their expression in plant chilling tolerance. Here we systematically investigated cold acclimation in tobacco seedlings over 2 days of exposure to low temperatures by examining responses in chloroplast genome copy number, transcript accumulation and translation, photosynthesis, cell physiology, and metabolism. Our time-resolved genome-wide investigation of chloroplast gene expression revealed substantial cold-induced translational regulation at both the initiation and elongation levels, in the virtual absence of changes at the transcript level. These cold-triggered dynamics in chloroplast translation are widely distinct from previously described high light-induced effects. Analysis of the gene set responding significantly to the cold stimulus suggested nonessential plastid-encoded subunits of photosynthetic protein complexes as novel players in plant cold acclimation. Functional characterization of one of these cold-responsive chloroplast genes by reverse genetics demonstrated that the encoded protein, the small cytochrome b6f complex subunit PetL, crucially contributes to photosynthetic cold acclimation. Together, our results uncover an important, previously underappreciated role of chloroplast translational regulation in plant cold acclimation

    Evaluation of presumably disease causing SCN1A variants in a cohort of common epilepsy syndromes

    Get PDF
    Objective: The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing, clinical laboratories are generating an ever-increasing catalogue of SCN1A variants. Variants are more likely to be classified as pathogenic if they have already been identified previously in a patient with epilepsy. Here, we critically re-evaluate the pathogenicity of this class of variants in a cohort of patients with common epilepsy syndromes and subsequently ask whether a significant fraction of benign variants have been misclassified as pathogenic. Methods: We screened a discovery cohort of 448 patients with a broad range of common genetic epilepsies and 734 controls for previously reported SCN1A mutations that were assumed to be disease causing. We re-evaluated the evidence for pathogenicity of the identified variants using in silico predictions, segregation, original reports, available functional data and assessment of allele frequencies in healthy individuals as well as in a follow up cohort of 777 patients. Results and Interpretation: We identified 8 known missense mutations, previously reported as path
    • …
    corecore