195 research outputs found

    Accuracy of Wrist-worn Physical Activity Monitors to Measure Energy Expenditure

    Get PDF
    IIn recent years, the popularity and demand of physical activity monitors has drastically risen with the need and want to improve physical fitness. Newer devices worn on the wrist measure both heart rate and energy expenditure but the accuracy of these measurements is unclear. PURPOSE: To measure the accuracy of three separate wrist-worn activity monitors to estimate energy expenditure during structured periods of aerobic exercise. METHODS: Twelve men and three women (22 ± 3 years, 25 ± 3 kg/m2) consented to participate in this study. Three different physical activity monitors, TomTom Cardio (TT), Microsoft Band (MB), and Fitbit Surge (FB), were randomly assigned to either the left or right wrist of each participant. The instructions for the testing procedure were thoroughly explained to every participant at the start of each trial. The treadmill started at a speed of 2 mph and increased by 1 mph every three minutes up to a max speed of 6 mph. Energy expenditure was estimated through direct measurement of oxygen consumed and carbon dioxide produced through a metabolic cart (MC, Parvo Medics True One ®2400). The mean bias in energy expenditure between MC and each device was calculated. Pearson product-moment correlations and 95% equivalence testing were also calculated. Statistical significance was set at an alpha level of 0.05. RESULTS: The mean bias between the MC and devices at 2 mph varied from -1.9 ± 1.1 kcal/min (FB) to 0.7 ± 1.0 kcal/min (MB) while the mean bias at 6 mph varied from -1.7 ± 2.1 kcal/min (MB) to 5.2 ± 1.7 kcal/min (TT). For total energy expenditure, all devices were significantly correlated with the MC (FB: r=0.66, p=0.007; TomTom: r=0.77, p\u3c0.001; MB: r=0.59, p=0.02). The mean bias for total energy expenditure was -25 ± 16 kcal for the FB, 26 ± 13 kcal for the TT, and -11 ± 17 kcal for the MB. The equivalence zone for MC was 88 kcal to 108 kcal but 90% confidence intervals of devices did not fall within this zone. CONCLUSION: The wrist-worn physical activity monitors used in this study that measure heart rate and energy expenditure tend to either underestimate or overestimate total energy expenditure from treadmill walking and running

    Developmental appearance of factors that bind specifically to cis-regulatory sequences of a gene expressed in the sea urchin embryo

    Get PDF
    Previous gene-transfer experiments have identified a 2500-nucleotide 5' domain of the CyIIIa cytoskeletal actin gene, which contains cis-regulatory sequences that are necessary and sufficient for spatial and temporal control of CyIIIa gene expression during embryogenesis. This gene is activated in late cleavage, exclusively in aboral ectoderm cell lineages. In this study, we focus on interactions demonstrated in vitro between sequences of the regulatory domain and proteins present in crude extracts derived from sea urchin embryo nuclei and from unfertilized eggs. Quantitative gel-shift measurements are utilized to estimate minimum numbers of factor molecules per embryo at 24 hr postfertilization, when the CyIIIa gene is active, at 7 hr, when it is still silent, and in the unfertilized egg. We also estimate the binding affinity preferences (K_r) of the various factors for their respective sites, relative to their affinity for synthetic DNA competitors. At least 14 different specific interactions occur within the regulatory regions, some of which produce multiple DNA-protein complexes. Values of K_r range from approximately 2 x 10^4 to approximately 2 x 10^6 for these factors under the conditions applied. With one exception, the minimum factor prevalences that we measured in the 400-cell 24-hr embryo nuclear extracts fell within the range of 2 x 10^5 to 2 x 10^6 molecules per embryo, i.e., a few hundred to a few thousand molecules per nucleus. Three developmental patterns were observed with respect to factor prevalence: Factors reacting at one site were found in unfertilized egg cytoplasm at about the same level per egg or embryo as in 24-hr embryo nuclei; factors reacting with five other regions of the regulatory domain are not detectable in egg cytoplasm but in 7-hr mid-cleavage-stage embryo, nuclei are already at or close to their concentrations in the 24-hr embryo nuclei; and factors reacting with five additional regions are not detectable in egg cytoplasm and are low in 7-hr embryo nuclei, i.e., ⩽10% per embryo of the level they attain in 24-hr embryo nuclei. The rise in concentration of factors of the latter class could provide the proximal cause for the temporal activation of the CyIIIa gene at the early blastula stage

    Validity of wrist-worn consumer products to measure heart rate and energy expenditure

    Get PDF
    Introduction: The ability to monitor physical activity throughout the day and during various activities continues to improve with the development of wrist-worn monitors. However, the accuracy of wrist-worn monitors to measure both heart rate and energy expenditure during physical activity is still unclear. The purpose of this study was to determine the accuracy of several popular wrist-worn monitors at measuring heart rate and energy expenditure. Methods: Participants wore the TomTom Cardio, Microsoft Band and Fitbit Surge on randomly assigned locations on each wrist. The maximum number of monitors per wrist was two. The criteria used for heart rate and energy expenditure were a three-lead electrocardiogram and indirect calorimetry using a metabolic cart. Participants exercised on a treadmill at 3.2, 4.8, 6.4, 8 and 9.7 km/h for 3 minutes at each speed, with no rest between speeds. Heart rate and energy expenditure were manually recorded every minute throughout the protocol. Results: Mean absolute percentage error for heart rate varied from 2.17 to 8.06% for the Fitbit Surge, from 1.01 to 7.49% for the TomTom Cardio and from 1.31 to 7.37% for the Microsoft Band. The mean absolute percentage error for energy expenditure varied from 25.4 to 61.8% for the Fitbit Surge, from 0.4 to 26.6% for the TomTom Cardio and from 1.8 to 9.4% for the Microsoft Band. Conclusion: Data from these devices may be useful in obtaining an estimate of heart rate for everyday activities and general exercise, but energy expenditure from these devices may be significantly over- or underestimated

    Ethyl biodiesels derived from non-edible oils within the biorefinery concept - Pilot scale production & engine emissions

    Get PDF
    Procedures and operating conditions optimized in laboratory scale for the production of ethyl biodiesels from non-edible vegetable oils (NEVOs) were successfully transferred at pilot scale, with implementation of separation and purification stages. The three NEVOs candidates are Balanites aegyptiaca (BA), Azadirachta indica (AI), and Jatropha curcas (JC), converted into BAEEs, AIEEs and JCEEs respectively via homogeneous catalysis. Quality specifications of the produced biofuels were used to explain pollutant emissions and engine performance observed via a power generator. Under the same conditions, blends of petrodiesel with crude BA or JC oil (50 wt.%) were also investigated. The selected overall methodology “feedstock-conversion-engine” led to the proposal of a sustainable alternative fuel. The candidate NEVO is BA oil to which the proposed alkali route should lead to a low cost biodiesel production process thanks to easy operating conditions, associated with a two-stage procedure (glycerol recycling) and a dry-purification method (rice husk ashes). Glycerol addition should be carried out at ambient temperature to play positively at phenomena occurring in the reacting medium (chemical kinetics, chemical equilibrium, phase equilibrium). Tests on power generator demonstrated that BAEEs led to cleaner combustion than petrodiesel, particularly for the most harmful emissions (light carbonyls and ultrafine particulate matter)

    Validity of Wrist-worn Physical Activity Monitors to Measure Heart Rate

    Get PDF
    Numerous physical activity monitors exist and are used to track and improve fitness levels. Due to the increasing popularity of these devices, newer products have been developed that measure heart rate (HR) at the wrist. Little is known about how accurate these devices are at measuring HR at the wrist and how they compare to each other. PURPOSE: To determine how accurately HR was measured by three different wrist-worn physical activity monitors. METHODS: Recreationally active men (n=9) and women (n=3) participated in this study. The average age and weight of participants was 22 ± 3 years and 73.9 ± 12 kg. TomTom Cardio (TT), Fitbit Surge (FB) and Microsoft Band (MB) physical activity monitors were used. The TT, FB, and MB were randomly assigned to the right or left wrist for each participant. The testing procedure included speeds of 2, 3, 4, 5, and 6 mph with each speed lasting three minutes. HR was measured by electrocardiography (ECG) using standard limb lead II and by the three different physical activity monitors. HR was recorded from each device every minute throughout the duration of the procedure. Pearson product moment correlations and bias between electrocardiography (ECG) and physical activity monitors with 95% limits of agreement (Bland-Altman analysis) were calculated. Repeated measures ANOVA [Speed x Device] were also calculated. Statistical significance was set at pRESULTS: At 2 mph and 3 mph, only TT HR was significantly correlated with ECG heart rate (r=0.693, p=0.012 and r=0.592, p=0.043). At 4 mph and 6 mph TT was significantly correlated with ECG (r=0.911, pCONCLUSION: With increasing speeds, physical activity monitors more accurately measure HR but individuals should be aware that these devices may overestimate HR during slower walking speeds

    Fatty Acid Methyl Esters as Biosolvents of Epoxy Resins: A Physicochemical Study

    Get PDF
    The C8 to C18 fatty acid methyl esters (FAME) have been compared as solvents for two epoxy resin pre-polymers, bisphenol A diglycidyl ether (DGEBA) and triglycidyl paminophenol ether (TGPA). It was found that the solubilization limits vary according to the ester and that methyl caprylate is the best solvent of both resins. To explain these solubility performances, physical and chemical properties of FAME were studied, such as the Hansen parameters, viscosity, binary diffusion coefficient and vaporization enthalpy. Determination of the physicochemical parameters of FAME was carried out by laboratory experimentations and by calculation from bibliographic data. The Hansen parameters of FAME and epoxy resins pre-polymers were theoretically and experimentally determined. The FAME chain length showed a long dependence on the binary diffusion parameters and kinematic viscosity, which are mass and momentum transport properties. Moreover, the vaporization enthalpy of these compounds was directly correlated with the solubilization limits

    Compression moulding of complex parts for the aerospace with discontinuous novel and recycled thermoplastic composite materials

    No full text
    International audienceThis development concerns the production of complex parts capable of withstanding concentrated loads with up to 84 % weight saving compared to metallic discontinuous thermoplastic composite materials

    Developmental appearance of factors that bind specifically to cis-regulatory sequences of a gene expressed in the sea urchin embryo

    Get PDF
    Previous gene-transfer experiments have identified a 2500-nucleotide 5' domain of the CyIIIa cytoskeletal actin gene, which contains cis-regulatory sequences that are necessary and sufficient for spatial and temporal control of CyIIIa gene expression during embryogenesis. This gene is activated in late cleavage, exclusively in aboral ectoderm cell lineages. In this study, we focus on interactions demonstrated in vitro between sequences of the regulatory domain and proteins present in crude extracts derived from sea urchin embryo nuclei and from unfertilized eggs. Quantitative gel-shift measurements are utilized to estimate minimum numbers of factor molecules per embryo at 24 hr postfertilization, when the CyIIIa gene is active, at 7 hr, when it is still silent, and in the unfertilized egg. We also estimate the binding affinity preferences (K_r) of the various factors for their respective sites, relative to their affinity for synthetic DNA competitors. At least 14 different specific interactions occur within the regulatory regions, some of which produce multiple DNA-protein complexes. Values of K_r range from approximately 2 x 10^4 to approximately 2 x 10^6 for these factors under the conditions applied. With one exception, the minimum factor prevalences that we measured in the 400-cell 24-hr embryo nuclear extracts fell within the range of 2 x 10^5 to 2 x 10^6 molecules per embryo, i.e., a few hundred to a few thousand molecules per nucleus. Three developmental patterns were observed with respect to factor prevalence: Factors reacting at one site were found in unfertilized egg cytoplasm at about the same level per egg or embryo as in 24-hr embryo nuclei; factors reacting with five other regions of the regulatory domain are not detectable in egg cytoplasm but in 7-hr mid-cleavage-stage embryo, nuclei are already at or close to their concentrations in the 24-hr embryo nuclei; and factors reacting with five additional regions are not detectable in egg cytoplasm and are low in 7-hr embryo nuclei, i.e., ⩽10% per embryo of the level they attain in 24-hr embryo nuclei. The rise in concentration of factors of the latter class could provide the proximal cause for the temporal activation of the CyIIIa gene at the early blastula stage

    Impact of Disease Management on Utilization and Adherence With Drugs and Tests: The case of diabetes treatment in the Florida: A Healthy State (FAHS) program

    Get PDF
    OBJECTIVE—The purpose of this study was to evaluate the effect of telephonic care management within a diabetes disease management program on adherence to treatment with hypoglycemic agents, ACE inhibitors (ACEIs), angiotensin receptor blockers (ARBs), statins, and recommended laboratory tests in a Medicaid population

    Lipase-catalysed acylation of starch and determination of the degree of substitution by methanolysis and GC

    Get PDF
    Background: Natural polysaccharides such as starch are becoming increasingly interesting as renewable starting materials for the synthesis of biodegradable polymers using chemical or enzymatic methods. Given the complexity of polysaccharides, the analysis of reaction products is challenging. Results: Esterification of starch with fatty acids has traditionally been monitored by saponification and back-titration, but in our experience this method is unreliable. Here we report a novel GC-based method for the fast and reliable quantitative determination of esterification. The method was used to monitor the enzymatic esterification of different starches with decanoic acid, using lipase from Thermomyces lanuginosus. The reaction showed a pronounced optimal water content of 1.25 mL per g starch, where a degree of substitution (DS) of 0.018 was obtained. Incomplete gelatinization probably accounts for lower conversion with less water. Conclusions: Lipase-catalysed esterification of starch is feasible in aqueous gel systems, but attention to analytical methods is important to obtain correct DS values
    corecore