7 research outputs found

    Implementation of the Chicago sum frequency laser at Palomar laser guide star test bed

    Get PDF
    Work is underway at the University of Chicago and Caltech Optical Observatories to implement a sodium laser guide star adaptive optics system for the 200 inch Hale telescope at Palomar Observatory. The Chicago sum frequency laser (CSFL) consists of two pulsed, diode-pumped, mode-locked Nd:YAG lasers working at 1.064 micron and 1.32 micron wavelengths. Light from the two laser beams is mixed in a non-linear crystal to produce radiation centered at 589 nm with a spectral width of 1.0 GHz (FWHM) to match that of the Sodium-D2 line. Currently the 1.064 micron and 1.32 micron lasers produce 14 watts and 8 watts of TEM-00 power respectively. The laser runs at 500 Hz rep. rate with 10% duty cycle. This pulse format is similar to that of the MIT-Lincoln labs and allows range gating of unwanted Rayleigh scatter down an angle of 60 degrees to zenith angle. The laser system will be kept in the Coude lab and will be projected up to a laser launch telescope (LLT) bore-sited to the Hale telescope. The beam-transfer optics, which conveys the laser beam from the Coude lab to the LLT, consists of motorized mirrors that are controlled in real time using quad-cell positioning systems. This needs to be done to prevent laser beam wander due to deflections of the telescope while tracking. There is a central computer that monitors the laser beam propagation up to the LLT, the interlocks and safety system status, laser status and actively controls the motorized mirrors. We plan to install a wide-field visible camera (for high flying aircraft) and a narrow field of view (FoV) IR camera (for low-flying aircraft) as part of our aircraft avoidance system

    Implementation of the Chicago sum frequency laser at Palomar laser guide star test bed

    Get PDF
    Work is underway at the University of Chicago and Caltech Optical Observatories to implement a sodium laser guide star adaptive optics system for the 200 inch Hale telescope at Palomar Observatory. The Chicago sum frequency laser (CSFL) consists of two pulsed, diode-pumped, mode-locked Nd:YAG lasers working at 1.064 micron and 1.32 micron wavelengths. Light from the two laser beams is mixed in a non-linear crystal to produce radiation centered at 589 nm with a spectral width of 1.0 GHz (FWHM) to match that of the Sodium-D2 line. Currently the 1.064 micron and 1.32 micron lasers produce 14 watts and 8 watts of TEM-00 power respectively. The laser runs at 500 Hz rep. rate with 10% duty cycle. This pulse format is similar to that of the MIT-Lincoln labs and allows range gating of unwanted Rayleigh scatter down an angle of 60 degrees to zenith angle. The laser system will be kept in the Coude lab and will be projected up to a laser launch telescope (LLT) bore-sited to the Hale telescope. The beam-transfer optics, which conveys the laser beam from the Coude lab to the LLT, consists of motorized mirrors that are controlled in real time using quad-cell positioning systems. This needs to be done to prevent laser beam wander due to deflections of the telescope while tracking. There is a central computer that monitors the laser beam propagation up to the LLT, the interlocks and safety system status, laser status and actively controls the motorized mirrors. We plan to install a wide-field visible camera (for high flying aircraft) and a narrow field of view (FoV) IR camera (for low-flying aircraft) as part of our aircraft avoidance system

    A Close Companion Search Around L Dwarfs Using Aperture Masking Interferometry and Palomar Laser Guide Star Adaptive Optics

    Get PDF
    We present a close companion search around 16 known early L dwarfs using aperture masking interferometry with Palomar laser guide star adaptive optics (LGS AO). The use of aperture masking allows the detection of close binaries, corresponding to projected physical separations of 0.6-10.0 AU for the targets of our survey. This survey achieved median contrast limits of ΔK ~ 2.3 for separations between 1.2λ/D-4λ/D and ΔK ~ 1.4 at 2/3λ/D. We present four candidate binaries detected with moderate-to-high confidence (90%-98%). Two have projected physical separations less than 1.5 AU. This may indicate that tight-separation binaries contribute more significantly to the binary fraction than currently assumed, consistent with spectroscopic and photometric overluminosity studies. Ten targets of this survey have previously been observed with the Hubble Space Telescope as part of companion searches. We use the increased resolution of aperture masking to search for close or dim companions that would be obscured by full aperture imaging, finding two candidate binaries. This survey is the first application of aperture masking with LGS AO at Palomar. Several new techniques for the analysis of aperture masking data in the low signal-to-noise regime are explored

    The Automated Palomar 60-Inch Telescope

    Get PDF
    We have converted the Palomar 60-inch telescope (P60) from a classical night assistant-operated telescope to a fully robotic facility. The automated system, which has been operational since September 2004, is designed for moderately fast (t <~ 3 minutes) and sustained (R <~ 23 mag) observations of gamma-ray burst afterglows and other transient events. Routine queue-scheduled observations can be interrupted in response to electronic notification of transient events. An automated pipeline reduces data in real-time, which is then stored on a searchable web-based archive for ease of distribution. We describe here the design requirements, hardware and software upgrades, and lessons learned from roboticization. We present an overview of the current system performance as well as plans for future upgrades.Comment: Accepted in PASP; 26 pages, 7 figures; high resolution version at http://www.srl.caltech.edu/~cenko/public/papers/p60.p

    Facilitizing the Palomar AO laser guide star system

    Get PDF
    We describe the work that has gone into taking the sodium Laser Guide Star (LGS) program on the Palomar AO system from a successful experiment to a facility instrument. In particular, we describe the operation of the system, the BTO (beam transfer optics) system which controls the path of the laser in the dome, the aircraft safety systems and the optical systems which allow us to take advantage of the unique properties of the macro/micro pulse laser. In addition we present on sky performance results that demonstrate K-band Strehl ratios of up to 48

    Facilitizing the Palomar AO laser guide star system

    Get PDF
    We describe the work that has gone into taking the sodium Laser Guide Star (LGS) program on the Palomar AO system from a successful experiment to a facility instrument. In particular, we describe the operation of the system, the BTO (beam transfer optics) system which controls the path of the laser in the dome, the aircraft safety systems and the optical systems which allow us to take advantage of the unique properties of the macro/micro pulse laser. In addition we present on sky performance results that demonstrate K-band Strehl ratios of up to 48
    corecore