38 research outputs found

    Evaluation of flagellum-related proteins FliD and FspA as subunit vaccines against Campylobacter jejuni colonisation in chickens

    Get PDF
    AbstractCampylobacter is the leading cause of food-borne diarrhoea in humans in the developed world and consumption of contaminated poultry meat is the main source of infection. Vaccination of broilers could reduce carcass contamination and zoonotic infections. Towards this aim, we evaluated recombinant anti-Campylobacter subunit vaccines based on the flagellum-capping protein FliD and the flagellum-secreted protein FspA as they are immunogenic in chickens and the flagellum is vital for colonisation. In three studies, a recombinant FliD vaccine induced a transient but reproducible and statistically significant decrease of c. 2log10CFU/g in caecal colonisation levels at 49 days post-primary vaccination on the day of hatch. Levels of serum IgY specific to FliD positively correlated with caecal bacterial counts in individual birds, indicating that such antibodies may not play a role in protection. The data add to the limited repertoire of candidate antigens for the control of a key foodborne zoonosis

    Immunocytochemical demonstration of the presence of catecholamine and serotonin neurons in the sheep olfactory bulb.

    No full text
    International audienc

    Immunocytochemical demonstration of the presence of catecholamine and serotonin neurons in the sheep olfactory bulb.

    No full text
    International audienc

    Nutrition en reanimation: un pas en avant, deux pas en arrière

    No full text
    SCOPUS: ed.jinfo:eu-repo/semantics/publishe

    ARL15 modulates magnesium homeostasis through N-glycosylation of CNNMs.

    No full text
    Cyclin M (CNNM1-4) proteins maintain cellular and body magnesium (Mg(2+)) homeostasis. Using various biochemical approaches, we have identified members of the CNNM family as direct interacting partners of ADP-ribosylation factor-like GTPase 15 (ARL15), a small GTP-binding protein. ARL15 interacts with CNNMs at their carboxyl-terminal conserved cystathionine-β-synthase (CBS) domains. In silico modeling of the interaction between CNNM2 and ARL15 supports that the small GTPase specifically binds the CBS1 and CNBH domains. Immunocytochemical experiments demonstrate that CNNM2 and ARL15 co-localize in the kidney, with both proteins showing subcellular localization in the endoplasmic reticulum, Golgi apparatus and the plasma membrane. Most importantly, we found that ARL15 is required for forming complex N-glycosylation of CNNMs. Overexpression of ARL15 promotes complex N-glycosylation of CNNM3. Mg(2+) uptake experiments with a stable isotope demonstrate that there is a significant increase of (25)Mg(2+) uptake upon knockdown of ARL15 in multiple kidney cancer cell lines. Altogether, our results establish ARL15 as a novel negative regulator of Mg(2+) transport by promoting the complex N-glycosylation of CNNMs
    corecore