16 research outputs found

    Kinetics of IL-7 and IL-15 Levels after Allogeneic Peripheral Blood Stem Cell Transplantation following Nonmyeloablative Conditioning

    Get PDF
    Background: We analysed kinetics of IL-7 and IL-15 levels in 70 patients given peripheral blood stem cells after nonmyeloablative conditioning. Methods: EDTA-anticoagulated plasma and serum samples were obtained before conditioning and about once per week after transplantation until day 100. Samples were aliquoted and stored at 280uC within 3 hours after collection until measurement of cytokines. IL-7 and IL-15 levels were measured by ELISAs. Results: Median IL-7 plasma levels remained below 6 pg/L throughout the first 100 days, although IL-7 plasma levels were significantly higher on days 7 (5.1 pg/mL, P = 0.002), 14 (5.2 pg/mL, P,0.001), and 28 (5.1 pg/mL, P = 0.03) (but not thereafter) than before transplantation (median value of 3.8 pg/mL). Median IL-15 serum levels were significantly higher on days 7 (12.5 pg/mL, P,0.001), 14 (10.5 pg/mL, P,0.001), and 28 (6.2 pg/mL, P,0.001) than before transplantation (median value of 2.4 pg/mL). Importantly, IL-7 and IL-15 levels on days 7 or 14 after transplantation did not predict grade II–IV acute GVHD. Conclusions: These data suggest that IL-7 and IL-15 levels remain relatively low after nonmyeloablative transplantation, and that IL-7 and IL-15 levels early after nonmyeloablative transplantation do not predict for acute GVHD

    Dip-coated screen for gain calibration and alignment of gamma-ray telescope mirrors

    No full text
    In this communication, we will present a dual-purpose calibration system of NectarCAM, a medium-size-telescope camera proposed for the Cherenkov Telescope Array (CTA). The device is based on a white diffuse-reflective screen mounted on an XY motorization to reach every location in the focal plane, including a parking position when not in use. The design of the system was led by the requirements to perform the mirror alignment and the study of the telescope Point Spread Function (PSF) on one side (A), and to calibrate the photodetection chains (one for each of the 1855 photomultiplier tubes) of the camera in single photoelectron mode on the other side (B). The main requirement for the calibration device consists in producing a high-reflective (> 90% between 450 nm and 700 nm) and diffusive (following Lambert's cosine law) surface for side A. The other side, B, should emit an homogeneous amount of light over the surface. To satisfy these requirements, we developed a unique screen made out of PMMA and coated with the BC-620 paint from Saint-Gobain. For single-photoelectron calibration purposes, light is produced by a pulsed light source and injected into the screen via a fishtail light guide. We studied the optimal screen shape, paint, and painting process. To do so, we produced several prototypes and compared the light output intensity over the screen surface. These studies led to the definition of a specific painting pattern that enhances the light emission uniformity over the final octagonal screen surface. After having briefly described the developed prototypes that led to the current calibration device, we will focus on the calibration system performances and will describe the dip-coating application process, which is an essential technique to achieve reliable and reproducible optical performances

    Dip-coated screen for gain calibration and alignment of gamma-ray telescope mirrors

    No full text
    In this communication, we will present a dual-purpose calibration system of NectarCAM, a medium-size-telescope camera proposed for the Cherenkov Telescope Array (CTA). The device is based on a white diffuse-reflective screen mounted on an XY motorization to reach every location in the focal plane, including a parking position when not in use. The design of the system was led by the requirements to perform the mirror alignment and the study of the telescope Point Spread Function (PSF) on one side (A), and to calibrate the photodetection chains (one for each of the 1855 photomultiplier tubes) of the camera in single photoelectron mode on the other side (B). The main requirement for the calibration device consists in producing a high-reflective (> 90% between 450 nm and 700 nm) and diffusive (following Lambert's cosine law) surface for side A. The other side, B, should emit an homogeneous amount of light over the surface. To satisfy these requirements, we developed a unique screen made out of PMMA and coated with the BC-620 paint from Saint-Gobain. For single-photoelectron calibration purposes, light is produced by a pulsed light source and injected into the screen via a fishtail light guide. We studied the optimal screen shape, paint, and painting process. To do so, we produced several prototypes and compared the light output intensity over the screen surface. These studies led to the definition of a specific painting pattern that enhances the light emission uniformity over the final octagonal screen surface. After having briefly described the developed prototypes that led to the current calibration device, we will focus on the calibration system performances and will describe the dip-coating application process, which is an essential technique to achieve reliable and reproducible optical performances

    Dip-coated screen for gain calibration and alignment of gamma-ray telescope mirrors

    No full text
    In this communication, we will present a dual-purpose calibration system of NectarCAM, a medium-size-telescope camera proposed for the Cherenkov Telescope Array (CTA). The device is based on a white diffuse-reflective screen mounted on an XY motorization to reach every location in the focal plane, including a parking position when not in use. The design of the system was led by the requirements to perform the mirror alignment and the study of the telescope Point Spread Function (PSF) on one side (A), and to calibrate the photodetection chains (one for each of the 1855 photomultiplier tubes) of the camera in single photoelectron mode on the other side (B). The main requirement for the calibration device consists in producing a high-reflective (> 90% between 450 nm and 700 nm) and diffusive (following Lambert's cosine law) surface for side A. The other side, B, should emit an homogeneous amount of light over the surface. To satisfy these requirements, we developed a unique screen made out of PMMA and coated with the BC-620 paint from Saint-Gobain. For single-photoelectron calibration purposes, light is produced by a pulsed light source and injected into the screen via a fishtail light guide. We studied the optimal screen shape, paint, and painting process. To do so, we produced several prototypes and compared the light output intensity over the screen surface. These studies led to the definition of a specific painting pattern that enhances the light emission uniformity over the final octagonal screen surface. After having briefly described the developed prototypes that led to the current calibration device, we will focus on the calibration system performances and will describe the dip-coating application process, which is an essential technique to achieve reliable and reproducible optical performances

    Dip-coated screen for gain calibration and alignment of gamma-ray telescope mirrors

    No full text
    International audienceIn this communication, we will present a dual-purpose calibration system of NectarCAM, a medium-size-telescope camera proposed for the Cherenkov Telescope Array (CTA). The device is based on a white diffuse-reflective screen mounted on an XY motorization to reach every location in the focal plane, including a parking position when not in use. The design of the system was led by the requirements to perform the mirror alignment and the study of the telescope Point Spread Function (PSF) on one side (A), and to calibrate the photodetection chains (one for each of the 1855 photomultiplier tubes) of the camera in single photoelectron mode on the other side (B). The main requirement for the calibration device consists in producing a high-reflective (> 90% between 450 nm and 700 nm) and diffusive (following Lambert's cosine law) surface for side A. The other side, B, should emit an homogeneous amount of light over the surface. To satisfy these requirements, we developed a unique screen made out of PMMA and coated with the BC-620 paint from Saint-Gobain. For single-photoelectron calibration purposes, light is produced by a pulsed light source and injected into the screen via a fishtail light guide. We studied the optimal screen shape, paint, and painting process. To do so, we produced several prototypes and compared the light output intensity over the screen surface. These studies led to the definition of a specific painting pattern that enhances the light emission uniformity over the final octagonal screen surface. After having briefly described the developed prototypes that led to the current calibration device, we will focus on the calibration system performances and will describe the dip-coating application process, which is an essential technique to achieve reliable and reproducible optical performances

    Dip-coated screen for gain calibration and alignment of gamma-ray telescope mirrors

    No full text
    In this communication, we will present a dual-purpose calibration system of NectarCAM, a medium-size-telescope camera proposed for the Cherenkov Telescope Array (CTA). The device is based on a white diffuse-reflective screen mounted on an XY motorization to reach every location in the focal plane, including a parking position when not in use. The design of the system was led by the requirements to perform the mirror alignment and the study of the telescope Point Spread Function (PSF) on one side (A), and to calibrate the photodetection chains (one for each of the 1855 photomultiplier tubes) of the camera in single photoelectron mode on the other side (B). The main requirement for the calibration device consists in producing a high-reflective (> 90% between 450 nm and 700 nm) and diffusive (following Lambert's cosine law) surface for side A. The other side, B, should emit an homogeneous amount of light over the surface. To satisfy these requirements, we developed a unique screen made out of PMMA and coated with the BC-620 paint from Saint-Gobain. For single-photoelectron calibration purposes, light is produced by a pulsed light source and injected into the screen via a fishtail light guide. We studied the optimal screen shape, paint, and painting process. To do so, we produced several prototypes and compared the light output intensity over the screen surface. These studies led to the definition of a specific painting pattern that enhances the light emission uniformity over the final octagonal screen surface. After having briefly described the developed prototypes that led to the current calibration device, we will focus on the calibration system performances and will describe the dip-coating application process, which is an essential technique to achieve reliable and reproducible optical performances

    Thinking out of the box - New approaches to controlling GVHD

    Full text link
    Graft-versus-host disease (GVHD) remains a major limitation of allogeneic hematopoietic cell transplantation (allo-HCT). Despite major advances in the understanding of GVHD pathogenesis, standard GVHD prophylaxis regimens continue to bebased on the combination of a calcineurin inhibitor with an antimetabolite, while first line treatmentsstill relies on high-dose corticosteroids. Further, no second line treatment has emerged thus far in acute or chronic GVHD patients who failed on corticosteroids. After briefly reviewing current standards of GVHD prevention and treatment, this article will discuss recent approaches that might change GVHD prophylaxis / treatment in the next decades, with a special focus on recently developed immunoregulatory strategies based on infusion of mesenchymal stromal or regulatory T-cells, or on injection of lowdose interleukin-2
    corecore