14 research outputs found

    Initial value representation for the SU(n) semiclassical propagator

    Full text link
    The semiclassical propagator in the representation of SU(n) coherent states is characterized by isolated classical trajectories subjected to boundary conditions in a doubled phase space. In this paper we recast this expression in terms of an integral over a set of initial-valued trajectories. These trajectories are monitored by a filter that collects only the appropriate contributions to the semiclassical approximation. This framework is suitable for the study of bosonic dynamics in n modes with fixed total number of particles. We exemplify the method for a Bose-Einstein condensate trapped in a triple-well potential, providing a detailed discussion on the accuracy and efficiency of the procedure.Comment: 24 pages, 6 figure

    Coherent state approach to the cross collisional effects in the population dynamics of a two-mode Bose-Einstein condensate

    Full text link
    We reanalyze the non-linear population dynamics of a Bose-Einstein Condensate (BEC) in a double well trap considering a semiclassical approach based on a time dependent variational principle applied to coherent states associated to SU(2) group. Employing a two-mode local approximation and hard sphere type interaction, we show in the Schwinger's pseudo-spin language the occurrence of a fixed point bifurcation that originates a separatrix of motion on a sphere. This separatrix corresponds to the borderline between two dynamical regimes of Josephson oscillations and mesoscopic self-trapping. We also consider the effects of interaction between particles in different wells, known as cross collisions. Such terms are usually neglected for traps sufficiently far apart, but recently it has been shown that they contribute to the effective tunneling constant with a factor growing linearly with the particle number. This effect changes considerably the effective tunneling of the system for sufficiently large number of trapped atoms, in perfect accord with experimental data. Finally, we identify analytically the transition parameter associated to the bifurcation in the generalized phase space of the model with cross-collision terms, and show how the dynamical regime depends on the initial conditions of the system and the collisional parameters values.Comment: 19 pages, 8 figures. Added some references, remarks on LMG model and acknowledgment

    Dynamics of a Bose-Einstein condensate in a symmetric triple-well trap

    Full text link
    We present a complete analysis of the dynamics of a Bose-Einstein condensate trapped in a symmetric triple-well potential. Our classical analogue treatment, based on a time-dependent variational method using SU(3) coherent states, includes the parameter dependence analysis of the equilibrium points and their local stability, which is closely related to the condensate collective behaviour. We also consider the effects of off-site interactions, and how these "cross-collisions" may become relevant for a large number of trapped bosons. Besides, we have shown analytically, by means of a simple basis transformation in the single-particle space, that an integrable sub-regime, known as twin-condensate dynamics, corresponds in the classical phase space to invariant surfaces isomorphic to the unit sphere. However, the quantum dynamics preserves the twin-condensate defining characteristics only partially, thus breaking the invariance of the associated quantum subspace. Moreover, the periodic geometry of the trapping potential allowed us to investigate the dynamics of finite angular momentum collective excitations, which can be suppressed by the emergence of chaos. Finally, using the generalized purity associated to the su(3) algebra, we were able to quantify the dynamical classicality of a quantum evolved system, as compared to the corresponding classical trajectory.Comment: 22 pages, 10 figure

    Semiclassical propagator for SU( n

    No full text

    Multiconfigurational quantum propagation with trajectory-guided generalized coherent states

    No full text
    A generalized version of the coupled coherent states method for coherent states of arbitrary Lie groups is developed. In contrast to the original formulation, which is restricted to frozen-Gaussian basis sets, the extended method is suitable for propagating quantum states of systems featuring diversified physical properties, such as spin degrees of freedom or particle indistinguishability. The approach is illustrated with simple models for interacting bosons trapped in double- and triple-well potentials, most adequately described in terms of SU(2) and SU(3) bosonic coherent states, respectively1449CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informação2008/09491-9; 2011/20065-4; 2012/20452-0; 2014/04036-
    corecore