126 research outputs found

    Self-seeded coprecipitation flow synthesis of iron oxide nanoparticles via triphasic reactor platform: Optimising heating performance under alternating magnetic fields

    Get PDF
    Liquid-liquid segmentation is a common method to prevent reactor fouling when synthesising nanoparticles in flow, despite limiting synthetic protocols to single reagent addition steps before segmentation. This work demonstrates how a modular triphasic (gas–liquid–liquid) flow reactor platform overcomes this limitation, facilitating a continuous and fouling-free four-step co-precipitation flow synthesis of iron oxide nanoparticles (IONPs) for magnetically induced hyperthermia cancer treatment (MHCT). For this and other biomedical applications water-based IONP syntheses such as co-precipitation are favoured, but producing IONPs > 10 nm as needed for MHCT remains challenging. To overcome this size barrier for co-precipitation syntheses, a seeded growth co-precipitation strategy was employed here for the first time. After demonstrating the synthesis in batch, a triphasic flow reactor was developed to translate the multistep batch protocol into flow. Nitrogen gas was used to space the liquid–liquid segmented slugs evenly, enabling self-synchronised solution addition into the aqueous slugs dispersed in heptane. Three additions of the iron precursor solution followed by citric acid solution addition formed the seeds, grew them to larger IONPs and stabilised them. The flow platform was used for screening of the synthetic parameters to optimise the IONP heating performance in an alternating magnetic field, hence investigating their potential as MHCT heating agents. The optimal reactor settings identified made it possible to continuously synthesise 0.46 gIONPs/h colloidally stable IONPs in the aqueous phase of size ∌15 nm. The fouling-free flow reactor operated at short overall residence times (<5 min) using just ferric and ferrous salts, sodium carbonate and citric acid. The IONPs exhibited high heating performance, with an intrinsic loss power up to 3.76 nH m2 kgFe-1

    Real-time tracking of delayed-onset cellular apoptosis induced by intracellular magnetic hyperthermia

    Get PDF
    Aim: To assess cell death pathways in response to magnetic hyperthermia. Materials & methods: Human melanoma cells were loaded with citric acid-coated iron-oxide nanoparticles, and subjected to a time-varying magnetic field. Pathways were monitored in vitro in suspensions and in situ in monolayers using fluorophores to report on early-stage apoptosis and late-stage apoptosis and/ or necrosis. Results: Delayed-onset effects were observed, with a rate and extent proportional to the thermal-load-per-cell. At moderate loads, membranal internal-to-external lipid exchange preceded rupture and death by a few hours (the timeline varying cell-to-cell), without any measurable change in the local environment temperature. Conclusion: Our observations support the proposition that intracellular heating may be a viable, controllable and nonaggressive in vivo treatment for human pathological conditions

    The Sudden Dominance of blaCTX–M Harbouring Plasmids in Shigella spp. Circulating in Southern Vietnam

    Get PDF
    Shigellosis is a disease caused by bacteria belonging to Shigella spp. and is a leading cause of bacterial gastrointestinal infections in infants in unindustrialized countries. The Shigellae are dynamic and capable of rapid change when placed under selective pressure in a human population. Extended spectrum beta lactamases (ESBLs) are enzymes capable of degrading cephalosporins (a group of antimicrobial agents) and the genes that encode them are common in pathogenic E. coli and other related organisms in industrialized countries. In southern Vietnam, we have isolated multiple cephalosporin-resistant Shigella that express ESBLs. Furthermore, over two years these strains have replaced strains isolated from patients with shigellosis that cannot express ESBLs. Our work describes the genes responsible for this characteristic and we investigate one of the elements carrying one of these genes. These finding have implications for treatment of shigellosis and support the growing necessity for vaccine development. Our findings also may be pertinent for other countries undergoing a similar economic transition to Vietnam's and the corresponding effect on bacterial populations

    mTORC1 is essential for early steps during Schwann cell differentiation of amniotic fluid stem cells and regulates lipogenic gene expression.

    Get PDF
    Schwann cell development is hallmarked by the induction of a lipogenic profile. Here we used amniotic fluid stem (AFS) cells and focused on the mechanisms occurring during early steps of differentiation along the Schwann cell lineage. Therefore, we initiated Schwann cell differentiation in AFS cells and monitored as well as modulated the activity of the mechanistic target of rapamycin (mTOR) pathway, the major regulator of anabolic processes. Our results show that mTOR complex 1 (mTORC1) activity is essential for glial marker expression and expression of Sterol Regulatory Element-Binding Protein (SREBP) target genes. Moreover, SREBP target gene activation by statin treatment promoted lipogenic gene expression, induced mTORC1 activation and stimulated Schwann cell differentiation. To investigate mTORC1 downstream signaling we expressed a mutant S6K1, which subsequently induced the expression of the Schwann cell marker S100b, but did not affect lipogenic gene expression. This suggests that S6K1 dependent and independent pathways downstream of mTORC1 drive AFS cells to early Schwann cell differentiation and lipogenic gene expression. In conclusion our results propose that future strategies for peripheral nervous system regeneration will depend on ways to efficiently induce the mTORC1 pathway

    Micronutrient Deficits Are Still Public Health Issues among Women and Young Children in Vietnam

    Get PDF
    Background: The 2000 Vietnamese National Nutrition Survey showed that the population’s dietary intake had improved since 1987. However, inequalities were found in food consumption between socioeconomic groups. As no national data exist on the prevalence of micronutrient deficiencies, a survey was conducted in 2010 to assess the micronutrient status of randomly selected 1526 women of reproductive age and 586 children aged 6–75 mo. Principal Findings: In women, according to international thresholds, prevalence of zinc deficiency (ZnD, 67.262.6%) and vitamin B12 deficiency (11.761.7%) represented public health problems, whereas prevalence of anemia (11.661.0%) and iron deficiency (ID, 13.761.1%) were considered low, and folate (,3%) and vitamin A (VAD,,2%) deficiencies were considered negligible. However, many women had marginal folate (25.1%) and vitamin A status (13.6%). Moreover, overweight (BMI$23 kg/m 2 for Asian population) or underweight occurred in 20 % of women respectively highlighting the double burden of malnutrition. In children, a similar pattern was observed for ZnD (51.963.5%), anemia (9.161.4%) and ID (12.961.5%) whereas prevalence of marginal vitamin A status was also high (47.362.2%). There was a significant effect of age on anemia and ID prevalence, with the youngest age group (6–17 mo) having the highest risk for anemia, ID, ZnD and marginal vitamin A status as compared to other groups. Moreover, the poorest groups of population had a higher risk for zinc, anemia and ID

    Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles

    Get PDF
    We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles

    Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles

    Get PDF
    We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles
    • 

    corecore