104 research outputs found

    Proteomic approach to identify candidate effector molecules during the in vitro immune exclusion of infective Teladorsagia circumcincta in the abomasum of sheep

    Get PDF
    International audienceIn the present study we have employed an in vitro organ challenge model to study the post-challenge responses in parasite naïve and immune gastric tissue of sheep, in an attempt to identify the host derived factors involved in immune exclusion of Teladorsagia circumcincta larvae. Proteins present in the epithelial cells and mucus from ovine abomasa following parasite challenge in previously naïve and immune animals were analysed through Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI-Tof)-MS and shotgun proteomics. MALDI-ToF analysis of epithelial cell lysates revealed that a number of proteins identified were differentially expressed in naïve and immune cells. These included intelectin and lysozymes, which were present at higher levels in epithelial cell lysates derived from immune samples. A large number of proteins were identified in the mucosal wash from immune tissue which were not present in the mucosal wash of the naïve tissue. Some of these proteins were present in washes of immune tissue prior to the parasite challenge including immunoglobulin A, galectin 14 and 15 and sheep mast cell protease 1. However, other proteins, such as calcium activated chloride channel and intelectin were only detected in the washings from the challenged tissue. The latter may be related to an enhanced mucus release, which may result in entrapment of infective larvae and thus reduced establishment in tissue that has been previously challenged with the parasite. In conclusion, several proteins have been identified which may be involved, either directly or indirectly, in the exclusion and immune elimination of incoming infective larvae. In the present study, the usefulness of the in vitro model has been confirmed, and the global proteomic approach has identified proteins that had not previously been associated with parasite exclusion from abomasal mucosa, such as the calcium activated chloride channel

    Mucin granule-associated proteins in human bronchial epithelial cells: the airway goblet cell "granulome"

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Excess mucus in the airways leads to obstruction in diseases such as chronic bronchitis, asthma, and cystic fibrosis. Mucins, the highly glycosolated protein components of mucus, are stored in membrane-bound granules housed in the cytoplasm of airway epithelial "goblet" cells until they are secreted into the airway lumen via an exocytotic process. Precise mechanism(s) of mucin secretion, including the specific proteins involved in the process, have yet to be elucidated. Previously, we have shown that the Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) protein regulates mucin secretion by orchestrating translocation of mucin granules from the cytosol to the plasma membrane, where the granules dock, fuse and release their contents into the airway lumen. Associated with MARCKS in this process are chaperone (Heat Shock Protein 70 [HSP70], Cysteine string protein [CSP]) and cytoskeletal (actin, myosin) proteins. However, additional granule-associated proteins that may be involved in secretion have not yet been elucidated.</p> <p>Methods</p> <p>Here, we isolated mucin granules and granule membranes from primary cultures of well differentiated human bronchial epithelial cells utilizing a novel technique of immuno-isolation, based on the presence of the calcium activated chloride channel hCLCA1 (the human ortholog of murine Gob-5) on the granule membranes, and verified via Western blotting and co-immunoprecipitation that MARCKS, HSP70, CSP and hCLCA1 were present on the granule membranes and associated with each other. We then subjected the isolated granules/membranes to liquid chromatography mass spectrometry (LC-MS/MS) to identify other granule associated proteins.</p> <p>Results</p> <p>A number of additional cytoskeletal (e.g. Myosin Vc) and regulatory proteins (e.g. Protein phosphatase 4) associated with the granules and could play a role in secretion were discovered. This is the first description of the airway goblet cell "granulome."</p

    Nitric oxide differentially regulates renal ATP-binding cassette transporters during endotoxemia

    Get PDF
    Nitric oxide (NO) is an important regulator of renal transport processes. In the present study, we investigated the role of NO, produced by inducible NO synthase (iNOS), in the regulation of renal ATP-binding cassette (ABC) transporters in vivo during endotoxemia. Wistar–Hannover rats were injected with lipopolysaccharide (LPS+) alone or in combination with the iNOS inhibitor, aminoguanidine. Controls received detoxified LPS (LPS−). After LPS+, proximal tubular damage and a reduction in renal function were observed. Furthermore, iNOS mRNA and protein, and the amount of NO metabolites in plasma and urine, increased compared to the LPS− group. Coadministration with aminoguanidine resulted in an attenuation of iNOS induction and reduction of renal damage. Gene expression of 20 ABC transporters was determined. After LPS+, a clear up-regulation in Abca1, Abcb1/P-glycoprotein (P-gp), Abcb11/bile salt export pump (Bsep), and Abcc2/multidrug resistance protein (Mrp2) was found, whereas Abcc8 was down-regulated. Up-regulation of Abcc2/Mrp2 was accompanied by enhanced calcein excretion. Aminoguanidine attenuated the effects on transporter expression. Our data indicate that NO, produced locally by renal iNOS, regulates the expression of ABC transporters in vivo. Furthermore, we showed, for the first time, expression and subcellular localization of Abcb11/Bsep in rat kidney

    Biochemical and Molecular Mechanisms of Folate Transport in Rat Pancreas; Interference with Ethanol Ingestion

    Get PDF
    Folic acid is an essential nutrient that is required for one-carbon biosynthetic processes and for methylation of biomolecules. Deficiency of this micronutrient leads to disturbances in normal physiology of cell. Chronic alcoholism is well known to be associated with folate deficiency which is due, in part to folate malabsorption. The present study deals with the mechanistic insights of reduced folate absorption in pancreas during chronic alcoholism. Male Wistar rats were fed 1 g/kg body weight/day ethanol (20% solution) orally for 3 months and the mechanisms of alcohol associated reduced folate uptake was studied in pancreas. The folate transport system in the pancreatic plasma membrane (PPM) was found to be acidic pH dependent one. The transporters proton coupled folate transporter (PCFT) and reduced folate carrier (RFC) are involved in folate uptake across PPM. The folate transporters were found to be associated with lipid raft microdomain of the PPM. Ethanol ingestion decreased the folate transport by reducing the levels of folate transporter molecules in lipid rafts at the PPM. The decreased transport efficiency of the PPM was reflected as reduced folate levels in pancreas. The chronic ethanol ingestion led to decreased pancreatic folate uptake. The decreased levels of PCFT and RFC expression in rat PPM were due to decreased association of these proteins with lipid rafts (LR) at the PPM

    Guide to Geographical Indications: Linking Products and Their Origins (Summary)

    Full text link

    Endogenous hepcidin synthesis protects the distal nephron against hemin and hemoglobin mediated necroptosis

    Get PDF
    Contains fulltext : 191552.pdf (publisher's version ) (Open Access

    H+-dependent calcium uptake into an IP3-sensitive calcium pool from rat parotid gland

    No full text
    • …
    corecore