1,188 research outputs found

    Multiple Thresholds in a Model System of Noisy Ion Channels

    Full text link
    Voltage-activated ion channels vary randomly between open and closed states, influenced by the membrane potential and other factors. Signal transduction is enhanced by noise in a simple ion channel model. The enhancement occurs in a finite range of signals; the range can be extended using populations of channels. The range increases more rapidly in multiple-threshold channel populations than in single-threshold populations. The diversity of ion channels may thus be present as a strategy to reduce the metabolic costs of handling a broad class of electrochemical signals.Comment: REVTeX 4, 5 pages, 4 figures; added paragrap

    Entropy and information in neural spike trains: Progress on the sampling problem

    Full text link
    The major problem in information theoretic analysis of neural responses and other biological data is the reliable estimation of entropy--like quantities from small samples. We apply a recently introduced Bayesian entropy estimator to synthetic data inspired by experiments, and to real experimental spike trains. The estimator performs admirably even very deep in the undersampled regime, where other techniques fail. This opens new possibilities for the information theoretic analysis of experiments, and may be of general interest as an example of learning from limited data.Comment: 7 pages, 4 figures; referee suggested changes, accepted versio

    Vortex Motion Noise in Micrometre-Sized Thin Films of the Amorphous Nb0.7Ge0.3 Weak-Pinning Superconductor

    Get PDF
    We report high-resolution measurements of voltage (V) noise in the mixed state of micrometre-sized thin films of amorphous Nb0.7Ge0.3, which is a good representative of weak-pinning superconductors. There is a remarkable difference between the noise below and above the irreversibility field Birr. Below Birr, in the presence of measurable pinning, the noise at small applied currents resembles shot noise, and in the regime of flux flow at larger currents decreases with increasing voltage due to a progressive ordering of the vortex motion. At magnetic fields B between Birr and the upper critical field Bc2 flux flow is present already at vanishingly small currents. In this regime the noise scales with (1-B/Bc2)^2 V^2 and has a frequency (f) spectrum of 1/f type. We interpret this noise in terms of the properties of strongly driven depinned vortex systems at high vortex density.Comment: 8 pages, 5 figures, version accepted for publication in PR

    Effect of Pulsed or Continuous Delivery of Salt on Sensory Perception Over Short Time Intervals

    Get PDF
    Salt in the human diet is a major risk factor for hypertension and many countries have set targets to reduce salt consumption. Technological solutions are being sought to lower the salt content of processed foods without altering their taste. In this study, the approach was to deliver salt solutions in pulses of different concentrations to determine whether a pulsed delivery profile affected sensory perception of salt. Nine different salt profiles were delivered by a Dynataste device and a trained panel assessed their saltiness using time–intensity and single-score sensory techniques. The profile duration (15 s) was designed to match eating conditions and the effects of intensity and duration of the pulses on sensory perception were investigated. Sensory results from the profiles delivered in either water or in a bouillon base were not statistically different. Maximum perceived salt intensities and the area under the time– intensity curves correlated well with the overall perceived saltiness intensity despite the stimulus being delivered as several pulses. The overall saltiness scores for profiles delivering the same overall amount of sodium were statistically not different from one another suggesting that, in this system, pulsed delivery did not enhance salt perception but the overall amount of salt delivered in each profile did affect sensory perception

    Adaptive Filtering Enhances Information Transmission in Visual Cortex

    Full text link
    Sensory neuroscience seeks to understand how the brain encodes natural environments. However, neural coding has largely been studied using simplified stimuli. In order to assess whether the brain's coding strategy depend on the stimulus ensemble, we apply a new information-theoretic method that allows unbiased calculation of neural filters (receptive fields) from responses to natural scenes or other complex signals with strong multipoint correlations. In the cat primary visual cortex we compare responses to natural inputs with those to noise inputs matched for luminance and contrast. We find that neural filters adaptively change with the input ensemble so as to increase the information carried by the neural response about the filtered stimulus. Adaptation affects the spatial frequency composition of the filter, enhancing sensitivity to under-represented frequencies in agreement with optimal encoding arguments. Adaptation occurs over 40 s to many minutes, longer than most previously reported forms of adaptation.Comment: 20 pages, 11 figures, includes supplementary informatio

    Vortex lattices in strong type-II superconducting two-dimensional strips

    Full text link
    We show how to calculate semi-analytically the dense vortex state in strong type-II superconducting nanostructures. For the specific case of a strip, we find vortex lattice solutions which also incorporate surface superconductivity. We calculate the energy cost to displace individual vortex rows parallel to the surfaces and find that this energy oscillates with the magnetic field. Remarkably, we also find that, at a critical field HH^* below Hc2H_{c2}, this ''shear'' energy becomes strictly zero for the surface rows due to an unexpected mismatch with the bulk lattice.Comment: Title, abstract, and some text paragraphs have been rewritte

    Melting of two dimensional solids on disordered substrate

    Full text link
    We study 2D solids with weak substrate disorder, using Coulomb gas renormalisation. The melting transition is found to be replaced by a sharp crossover between a high TT liquid with thermally induced dislocations, and a low TT glassy regime with disorder induced dislocations at scales larger than ξd\xi_{d} which we compute (ξdRcRa\xi_{d}\gg R_{c}\sim R_{a}, the Larkin and translational correlation lengths). We discuss experimental consequences, reminiscent of melting, such as size effects in vortex flow and AC response in superconducting films.Comment: 4 pages, uses RevTeX, Amssymb, multicol,eps

    Intrinsic gain modulation and adaptive neural coding

    Get PDF
    In many cases, the computation of a neural system can be reduced to a receptive field, or a set of linear filters, and a thresholding function, or gain curve, which determines the firing probability; this is known as a linear/nonlinear model. In some forms of sensory adaptation, these linear filters and gain curve adjust very rapidly to changes in the variance of a randomly varying driving input. An apparently similar but previously unrelated issue is the observation of gain control by background noise in cortical neurons: the slope of the firing rate vs current (f-I) curve changes with the variance of background random input. Here, we show a direct correspondence between these two observations by relating variance-dependent changes in the gain of f-I curves to characteristics of the changing empirical linear/nonlinear model obtained by sampling. In the case that the underlying system is fixed, we derive relationships relating the change of the gain with respect to both mean and variance with the receptive fields derived from reverse correlation on a white noise stimulus. Using two conductance-based model neurons that display distinct gain modulation properties through a simple change in parameters, we show that coding properties of both these models quantitatively satisfy the predicted relationships. Our results describe how both variance-dependent gain modulation and adaptive neural computation result from intrinsic nonlinearity.Comment: 24 pages, 4 figures, 1 supporting informatio

    Routine outcome monitoring en benchmarking: hoe kunnen we behandelresultaten op een zorgvuldige manier vergelijken?

    Get PDF
    Contains fulltext : 157216.pdf (publisher's version ) (Open Access)Achtergrond: Het structureel meten van de resultaten van een behandeling in de geestelijke gezondheidszorg en het vergelijken daarvan tussen instellingen helpen om inzicht te krijgen in het effect van behandelingen in de reguliere praktijk. Doel: Geven van een overzicht van de kwesties die van belang zijn bij het vergelijken van instellingen. Methode: Analyseren van documentatie en beleidsinformatie over en praktijkervaring met routine outcome monitoring (rom). Resultaten: We beschrijven knelpunten die kunnen ontstaan bij het vergelijken van instellingen en formuleren oplossingsrichtingen voor deze knelpunten. Daarbij staat centraal dat het werken met rom een groeiproces is, waarbij men experimenteert met verschillende oplossingsrichtingen en op basis van ervaringen definitieve keuzes maakt. Conclusie: Het is leerzaam om instellingen te vergelijken, zowel onderling als met 'best practices' (benchmarking). Instellingen verschillen echter in cliëntenpopulaties, meetprocedures en instrumentarium. Een zinvolle vergelijking is op termijn toch mogelijk.5 p
    corecore