51 research outputs found

    EFFECTS OF LOW-DOSE-GAMMA RAYS ON THE IMMUNE SYSTEM OF DIFFERENT ANIMAL MODELS OF DISEASE

    Get PDF
    We reviewed the beneficial or harmful effects of low-dose ionizing radiation on several diseases based on a search of the literature. The attenuation of autoimmune manifestations in animal disease models irradiated with low-dose γ-rays was previously reported by several research groups, whereas the exacerbation of allergic manifestations was described by others. Based on a detailed examination of the literature, we divided animal disease models into two groups: one group consisting of collagen-induced arthritis (CIA), experimental encephalomyelitis (EAE), and systemic lupus erythematosus, the pathologies of which were attenuated by low-dose irradiation, and another group consisting of atopic dermatitis, asthma, and Hashimoto’s thyroiditis, the pathologies of which were exacerbated by low-dose irradiation. The same biological indicators, such as cytokine levels and Tcell subpopulations, were examined in these studies. Low-dose irradiation reduced interferon (IFN)-gamma (γ) and interleukin (IL)-6 levels and increased IL-5 levels and the percentage of CD4+CD25+Foxp3+Treg cells in almost all immunological disease cases examined. Variations in these biological indicators were attributed to the attenuation or exacerbation of the disease’s manifestation. We concluded that autoimmune diseases caused by autoantibodies were attenuated by low-dose irradiation, whereas diseases caused by antibodies against external antigens, such as atopic dermatitis, were exacerbated

    Real-time in vivo analysis of T cell activation in the central nervous system using a genetically encoded calcium indicator

    No full text
    To study T cell activation in vivo in real time, we introduced a newly developed fluorescence resonance energy transfer-based, genetically encoded calcium indicator into autoantigen-specific and non-autoantigen-specific CD4(+) T cells. Using two-photon microscopy, we explored the responses of retrovirally transduced calcium indicator-expressing T cells to antigen in the lymph nodes and the central nervous system. In lymph nodes, the administration of exogenous antigen caused an almost immediate arrest of T cells around antigen-presenting cells and an instant rise of cytosolic calcium. In contrast, encephalitogenic T cells entering the leptomeningeal space, one main portal into the central nervous system parenchyma during experimental autoimmune encephalomyelitis, showed elevated intracellular calcium concentrations while still meandering through the space. This approach enabled us to follow the migration and activation patterns of T cells in vivo during the course of the disease

    Thermalization of a UV laser ablation plume in a background gas: From a directed to a diffusionlike flow

    No full text
    Combined diagnostic measurements of deposition rates and ion time-of-flight signals have been employed to study the expansion of a laser ablation plume into a background gas. With increasing gas pressure the angular distribution of the collected ablated atoms becomes broader, while the total collected yield decreases. The total collected yield shows three separate regimes with increasing pressure, a vacuumlike regime, a transition regime with increasing plume broadening and splitting of the ion signal, and at the highest pressure a diffusionlike regime with a broad angular distribution. In the high-pressure regime the expansion can be described by a simple model based on diffusion from a confined plume
    corecore