7 research outputs found

    Phosphoregulation provides specificity to biomolecular condensates in the cell cycle and cell polarity

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gerbich, T. M., McLaughlin, G. A., Cassidy, K., Gerber, S., Adalsteinsson, D., & Gladfelter, A. S. Phosphoregulation provides specificity to biomolecular condensates in the cell cycle and cell polarity. Journal of Cell Biology, 219(7), (2020): e201910021, doi:10.1083/jcb.201910021.Biomolecular condensation is a way of organizing cytosol in which proteins and nucleic acids coassemble into compartments. In the multinucleate filamentous fungus Ashbya gossypii, the RNA-binding protein Whi3 regulates the cell cycle and cell polarity through forming macromolecular structures that behave like condensates. Whi3 has distinct spatial localizations and mRNA targets, making it a powerful model for how, when, and where specific identities are established for condensates. We identified residues on Whi3 that are differentially phosphorylated under specific conditions and generated mutants that ablate this regulation. This yielded separation of function alleles that were functional for either cell polarity or nuclear cycling but not both. This study shows that phosphorylation of individual residues on molecules in biomolecular condensates can provide specificity that gives rise to distinct functional identities in the same cell.The work was supported by National Institutes of Health grant R01-GM-081506

    mRNA structure determines specificity of a polyQ-driven phase separation

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here by permission of American Association for the Advancement of Science for personal use, not for redistribution. The definitive version was published in American Association for the Advancement of Science 360 (2018): 922-927, doi:10.1126/science.aar7432.RNA promotes liquid-liquid phase separation (LLPS) to build membrane-less compartments in cells. How distinct molecular compositions are established and maintained in these liquid compartments is unknown. Here we report that secondary structure allows mRNAs to self-associate and determines if an mRNA is recruited to or excluded from liquid compartments. The polyQ-protein Whi3 induces conformational changes in RNA structure and generates distinct molecular fluctuations depending on the RNA sequence. These data support a model in which structure-based, RNA-RNA interactions promote assembly of distinct droplets and protein-driven, conformational dynamics of the RNA maintain this identity. Thus, the shape of RNA can promote the formation and coexistence of the diverse array of RNA-rich liquid compartments found in a single cell.This work was supported by NIH GM R01- GM081506, the HHMI Faculty Scholars program, R35 GM122532, ACS 130845-RSG-17-114- 01-RMC, NIH 1DP2 GM105453, and NIH R01 GM115631

    Non-model model organisms

    Get PDF
    Abstract Model organisms are widely used in research as accessible and convenient systems to study a particular area or question in biology. Traditionally only a handful of organisms have been widely studied, but modern research tools are enabling researchers to extend the set of model organisms to include less-studied and more unusual systems. This Forum highlights a range of 'non-model model organisms' as emerging systems for tackling questions across the whole spectrum of biology (and beyond), the opportunities and challenges, and the outlook for the future

    Non-model model organisms

    No full text
    corecore