204 research outputs found

    Transition from cMyc to L-Myc during dendritic cell development coordinated by rising levels of IRF8

    Get PDF
    During dendritic cell (DC) development, Myc expression in progenitors is replaced by Mycl in mature DCs, but when and how this transition occurs is unknown. We evaluated DC development using reporters for MYC, MYCL, and cell cycle proteins Geminin and CDT1 in wild-type and various mutant mice. For classical type 1 dendritic cells (cDC1s) and plasmacytoid DCs (pDCs), the transition occurred upon their initial specification from common dendritic cell progenitors (CDPs) or common lymphoid progenitors (CLPs), respectively. This transition required high levels of IRF8 and interaction with PU.1, suggesting the use of EICEs within Mycl enhancers. In pDCs, maximal MYCL induction also required the +41kb Irf8 enhancer that controls pDC IRF8 expression. IRF8 also contributed to repression of MYC. While MYC is expressed only in rapidly dividing DC progenitors, MYCL is most highly expressed in DCs that have exited the cell cycle. Thus, IRF8 levels coordinate the Myc-Mycl transition during DC development

    Snail promotes the cell-autonomous generation of Flk1 + endothelial cells through the repression of the microRNA-200 family

    Get PDF
    Expression of the transcription factor Snail is required for normal vasculogenesis in the developing mouse embryo. In addition, tumors expressing Snail have been associated with a more malignant phenotype, with both increased invasive properties and angiogenesis. Although the relationship between Snail and vasculogenesis has been noted, no mechanistic analysis has been elucidated. Here, we show that in addition to inducing an epithelial mesenchymal transition, Snail promotes the cell-autonomous induction of Flk1(+) endothelial cells in an early subset of differentiating mouse embryonic stem (ES) cells. Cells that become Flk1+ in response to Snail have a transcriptional profile specific to Gata6+primitive endoderm, but not the early Nanog+epiblast. We further show that Snail's ability to promote Flk1(+) endothelium depends on fibroblast growth factor signaling as well as the repression of the microRNA-200 (miR-200) family, which directly targets the 3′ UTRs of Flk1 and Ets1. Together, our results show that Snail is capable of inducing Flk1+ lineage commitment in a subset of differentiating ES cells through the down-regulation of the miR-200 family. We hypothesize that this mechanism of Snail-induced vasculogenesis may be conserved in both the early developing embryo and malignant cancers

    Distinct and complementary functions of MDA5 and TLR3 in poly(I:C)-mediated activation of mouse NK cells

    Get PDF
    The double-stranded RNA (dsRNA) analogue poly(I:C) is a promising adjuvant for cancer vaccines because it activates both dendritic cells (DCs) and natural killer (NK) cells, concurrently promoting adaptive and innate anticancer responses. Poly(I:C) acts through two dsRNA sensors, Toll-like receptor 3 (TLR3) and melanoma differentiation-associated protein-5 (MDA5). Here, we investigated the relative contributions of MDA5 and TLR3 to poly(I:C)-mediated NK cell activation using MDA5−/−, TLR3−/−, and MDA5−/−TLR3−/− mice. MDA5 was crucial for NK cell activation, whereas TLR3 had a minor impact most evident in the absence of MDA5. MDA5 and TLR3 activated NK cells indirectly through accessory cells and induced the distinct stimulatory cytokines interferon-α and interleukin-12, respectively. To identify the relevant accessory cells in vivo, we generated bone marrow chimeras between either wild-type (WT) and MDA5−/− or WT and TLR3−/− mice. Interestingly, multiple accessory cells were implicated, with MDA5 acting primarily in stromal cells and TLR3 predominantly in hematopoietic cells. Furthermore, poly(I:C)-mediated NK cell activation was not notably impaired in mice lacking CD8α DCs, providing further evidence that poly(I:C) acts through diverse accessory cells rather than solely through DCs. These results demonstrate distinct yet complementary roles for MDA5 and TLR3 in poly(I:C)-mediated NK cell activation

    WDFY4 deficiency in NOD mice ameliorates autoimmune diabetes and insulitis

    Get PDF
    The events that initiate autoimmune diabetes in nonobese diabetic (NOD) mice remain poorly understood. CD

    Indoleamine 2,3-dioxygenase 1 activation in mature cDC1 promotes tolerogenic education of inflammatory cDC2 via metabolic communication

    Get PDF
    Conventional dendritic cells (cDCs), cDC1 and cDC2, act both to initiate immunity and maintain self-tolerance. The tryptophan metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is used by cDCs in maintaining tolerance, but its role in different subsets remains unclear. At homeostasis, only mature CCR

    Altered compensatory cytokine signaling underlies the discrepancy between Flt3–/– and Flt3l–/– mice

    Get PDF
    The receptor Flt3 and its ligand Flt3L are both critical for dendritic cell (DC) development, but DC deficiency is more severe i
    corecore