23 research outputs found

    Advanced Mass Spectrometry Imaging in Neuropharmacology

    No full text
    Mass spectrometry imaging (MSI) has emerged as a valuable approach for mapping multiple molecular species in sections of diverse tissues. It enables simultaneous detection of numerous compounds (from neurotransmitters to small proteins) in the brain at relatively high lateral resolution (>5 μm) on a routine basis. Matrix-assisted laser desorption/ionization (MALDI)-MSI and desorption electrospray ionization (DESI)-MSI are the most widely applied MSI techniques in tissue distribution studies. Recent advances in MSI instruments and software allow quantitative analysis of large numbers of compounds with high mass accuracy and high mass resolving power. Thus, in studies this thesis is based upon, MSI technology was used to address several challenging aspects of neuropharmacology. Restricted passage of potentially neuroactive substances into the brain, unpredictable multi-target effects, and the complexity of the central nervous system (CNS) physiology, are major obstacles in the development of efficient drugs. The simultaneous investigation of drugs’ delivery to the brain and potential effects on several CNS pathways in specific brain regions is, therefore, highly important. In addition, localization information is required for more comprehensive insights into CNS responses to both pharmaceutical agents and biological processes such as aging. MSI-based analysis of the transport of two selected drugs into the brain demonstrated effects of efflux membrane proteins on their distributions in the brain. The MDR1 substrate loperamide was found to localize specifically in the choroid plexus, indicating low brain entrance. In addition, MSI uncovered drug-drug interactions at the blood-brain barrier involving MDR1 inhibition. The technology was further used to explore neurochemical alterations induced by aging and acetylcholinesterase inhibition. First, MSI revealed that the cholinergic system’s responsivity in the retrosplenial cortex, a post-cingulate cortical area highly involved in cognition, to acetylcholinesterase inhibition significantly declined with age. Subsequently, simultaneous investigation of multiple brain metabolic pathways in specific brain areas with multivariate data analysis techniques demonstrated age-induced alterations in mitochondrial function, lipid signaling, and acetylcholine metabolism. Finally, MSI unveiled age-induced alterations in levels and distributions of the monoaminergic neurotransmitters and their metabolites in particular brain areas such as the ventral pallidum, caudate putamen, hippocampus, and cortical substructures. Age- and region-specific effects of acetylcholinesterase inhibition on the neurotransmitter systems were also detected. In conclusion, the studies provided novel insights into important brain pharmacokinetic and pharmacodynamic phenomena using advanced MSI techniques, as described and discussed in this thesis

    Advanced Mass Spectrometry Imaging in Neuropharmacology

    No full text
    Mass spectrometry imaging (MSI) has emerged as a valuable approach for mapping multiple molecular species in sections of diverse tissues. It enables simultaneous detection of numerous compounds (from neurotransmitters to small proteins) in the brain at relatively high lateral resolution (>5 μm) on a routine basis. Matrix-assisted laser desorption/ionization (MALDI)-MSI and desorption electrospray ionization (DESI)-MSI are the most widely applied MSI techniques in tissue distribution studies. Recent advances in MSI instruments and software allow quantitative analysis of large numbers of compounds with high mass accuracy and high mass resolving power. Thus, in studies this thesis is based upon, MSI technology was used to address several challenging aspects of neuropharmacology. Restricted passage of potentially neuroactive substances into the brain, unpredictable multi-target effects, and the complexity of the central nervous system (CNS) physiology, are major obstacles in the development of efficient drugs. The simultaneous investigation of drugs’ delivery to the brain and potential effects on several CNS pathways in specific brain regions is, therefore, highly important. In addition, localization information is required for more comprehensive insights into CNS responses to both pharmaceutical agents and biological processes such as aging. MSI-based analysis of the transport of two selected drugs into the brain demonstrated effects of efflux membrane proteins on their distributions in the brain. The MDR1 substrate loperamide was found to localize specifically in the choroid plexus, indicating low brain entrance. In addition, MSI uncovered drug-drug interactions at the blood-brain barrier involving MDR1 inhibition. The technology was further used to explore neurochemical alterations induced by aging and acetylcholinesterase inhibition. First, MSI revealed that the cholinergic system’s responsivity in the retrosplenial cortex, a post-cingulate cortical area highly involved in cognition, to acetylcholinesterase inhibition significantly declined with age. Subsequently, simultaneous investigation of multiple brain metabolic pathways in specific brain areas with multivariate data analysis techniques demonstrated age-induced alterations in mitochondrial function, lipid signaling, and acetylcholine metabolism. Finally, MSI unveiled age-induced alterations in levels and distributions of the monoaminergic neurotransmitters and their metabolites in particular brain areas such as the ventral pallidum, caudate putamen, hippocampus, and cortical substructures. Age- and region-specific effects of acetylcholinesterase inhibition on the neurotransmitter systems were also detected. In conclusion, the studies provided novel insights into important brain pharmacokinetic and pharmacodynamic phenomena using advanced MSI techniques, as described and discussed in this thesis

    Prediction Models for Brain Distribution of Drugs Based on Biomimetic Chromatographic Data

    No full text
    The development of high-throughput approaches for the valid estimation of brain disposition is of great importance in the early drug screening of drug candidates. However, the complexity of brain tissue, which is protected by a unique vasculature formation called the blood-brain barrier (BBB), complicates the development of robust in silico models. In addition, most computational approaches focus only on brain permeability data without considering the crucial factors of plasma and tissue binding. In the present study, we combined experimental data obtained by HPLC using three biomimetic columns, i.e., immobilized artificial membranes, human serum albumin, and alpha(1)-acid glycoprotein, with molecular descriptors to model brain disposition of drugs. K-p,K-uu,K-brain, as the ratio between the unbound drug concentration in the brain interstitial fluid to the corresponding plasma concentration, brain permeability, the unbound fraction in the brain, and the brain unbound volume of distribution, was collected from literature. Given the complexity of the investigated biological processes, the extracted models displayed high statistical quality (R-2 > 0.6), while in the case of the brain fraction unbound, the models showed excellent performance (R-2 > 0.9). All models were thoroughly validated, and their applicability domain was estimated. Our approach highlighted the importance of phospholipid, as well as tissue and protein, binding in balance with BBB permeability in brain disposition and suggests biomimetic chromatography as a rapid and simple technique to construct models with experimental evidence for the early evaluation of CNS drug candidates

    Inquiry-based Learning of Proteomics and Metabolomics

    No full text
    Given the rapid development of data-driven experimental procedures within the life sciences, it is important to equip students with proper skills and knowledge on how to obtain and interpret complex data. While laboratory exercises have for a long time been well established as a teaching method for life sciences, we consider there is room for improvement in how laboratory exercises are conducted. Hence, we designed a laboratory exercise course in which students at the graduate level in the European education system (M.Sc.) are challenged to pose their own biological question and write their own laboratory protocol for a proteomic study to investigate their hypothesis. Here, students are supported in their task with lectures and seminars that take them through the required details on experimental sample preparation, analysis with LC-MS, and proteomic data evaluation of biological function and relevance. According to student interviews, the inquiry-based learning concept we used here provided a deeper understanding of the laboratory protocols they wrote, according to which they eventually performed their own experiments

    Regional Brain Analysis of Modified Amino Acids and Dipeptides during the Sleep/Wake Cycle

    No full text
    Sleep is a state in which important restorative and anabolic processes occur. Understanding changes of these metabolic processes during the circadian rhythm in the brain is crucial to elucidate neurophysiological mechanisms important for sleep function. Investigation of amino acid modifications and dipeptides has recently emerged as a valuable approach in the metabolic profiling of the central nervous system. Nonetheless, very little is known about the effects of sleep on the brain levels of amino acid analogues. In the present study, we examined brain regional sleep-induced alterations selective for modified amino acids and dipeptides using Ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) based metabolomics. Our approach enabled the detection and identification of numerous amino acid-containing metabolites in the cortex, the hippocampus, the midbrain, and the cerebellum. In particular, analogues of the aromatic amino acids phenylalanine, tyrosine and tryptophan were significantly altered during sleep in the investigated brain regions. Cortical levels of medium and long chain N-acyl glycines were higher during sleep. Regional specific changes were also detected, especially related to tyrosine analogues in the hippocampus and the cerebellum. Our findings demonstrate a strong correlation between circadian rhythms and amino acid metabolism specific for different brain regions that provide previously unknown insights in brain metabolism

    Identification of New Ketamine Metabolites and Their Detailed Distribution in the Mammalian Brain

    No full text
    Ketamine is a common anesthetic used in human and veterinary medicine. This drug has recently received increased medical and scientific attention due to its indications for neurological diseases. Despite being applied for decades, ketamine's entire metabolism and pharmacological profile have not been elucidated yet. Therefore, insights into the metabolism and brain distribution are important toward identification of neurological effects. Herein, we have investigated ketamine and its metabolites in the pig brain, cerebrospinal fluid, and plasma using mass spectrometric and metabolomics analysis. We discovered previously unknown metabolites and validated their chemical structures. Our comprehensive analysis of the brain distribution of ketamine and 30 metabolites describes significant regional differences detected mainly for phase II metabolites. Elevated levels of these metabolites were identified in brain regions linked to clearance through the cerebrospinal fluid. This study provides the foundation for multidisciplinary studies of ketamine metabolism and the elucidation of neurological effects by ketamine

    Neuropharmacokinetic visualization of regional and subregional unbound antipsychotic drug transport across the blood-brain barrier.

    No full text
    Comprehensive determination of the extent of drug transport across the region-specific blood-brain barrier (BBB) is a major challenge in preclinical studies. Multiple approaches are needed to determine the regional free (unbound) drug concentration at which a drug engages with its therapeutic target. We present an approach that merges in vivo and in vitro neuropharmacokinetic investigations with mass spectrometry imaging to quantify and visualize both the extent of unbound drug BBB transport and the post-BBB cerebral distribution of drugs at regional and subregional levels. Direct imaging of the antipsychotic drugs risperidone, clozapine, and olanzapine using this approach enabled differentiation of regional and subregional BBB transport characteristics at 20-µm resolution in small brain regions, which could not be achieved by other means. Our approach allows investigation of heterogeneity in BBB transport and presents new possibilities for molecular psychiatrists by facilitating interpretation of regional target-site exposure results and decision-making

    Basal ganglia neuropeptides show abnormal processing associated with L-DOPA-induced dyskinesia

    No full text
    L-DOPA administration is the primary treatment for Parkinson's disease (PD) but long-term administration is usually accompanied by hyperkinetic side-effects called L-DOPA-induced dyskinesia (LID). Signaling neuropeptides of the basal ganglia are affected in LID and changes in the expression of neuropeptide precursors have been described, but the final products formed from these precursors have not been well defined and regionally mapped. We therefore used mass spectrometry imaging to visualize and quantify neuropeptides in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposed parkinsonian and LID Macaca mulatta brain samples. We found that dyskinesia severity correlated with the levels of some abnormally processed peptides - notably, des-tyrosine dynorphins, substance P (1-7), and substance P (1-9) - in multiple brain regions. Levels of the active neuropeptides; dynorphin B, dynorphin A (1-8), alpha-neoendorphin, substance P (1-11), and neurokinin A, in the globus pallidus and substantia nigra correlated with putaminal levels of L-DOPA. Our results demonstrate that the abundance of selected active neuropeptides is associated with L-DOPA concentrations in the putamen, emphasizing their sensitivity to L-DOPA. Additionally, levels of truncated neuropeptides (which generally exhibit reduced or altered receptor affinity) correlate with dyskinesia severity, particularly for peptides associated with the direct pathway (i.e., dynorphins and tachykinins). The increases in tone of the tachykinin, enkephalin, and dynorphin neuropeptides in LID result in abnormal processing of neuropeptides with different biological activity and may constitute a functional compensatory mechanism for balancing the increased L-DOPA levels across the whole basal ganglia

    Differential regulation of oxidative stress, microbiota-derived, and energy metabolites in the mouse brain during sleep

    No full text
    Sleep has evolved as a universal core function to allow for restorative biological processes. Detailed knowledge of metabolic changes necessary for the sleep state in the brain is missing. Herein, we have performed an in-depth metabolic analysis of four mouse brain regions and uncovered region-specific circadian variations. Metabolites linked to oxidative stress were altered during sleep including acylcarnitines, hydroxylated fatty acids, phenolic compounds, and thiol-containing metabolites. These findings provide molecular evidence of a significant metabolic shift of the brain energy metabolism. Specific alterations were observed for brain metabolites that have previously not been associated with a circadian function including the microbiome-derived metabolite ergothioneine that suggests a regulatory function. The pseudopeptide beta-citryl-glutamate has been linked to brain development and we have now discovered a previously unknown regioisomer. These metabolites altered by the circadian rhythm represent the foundation for hypothesis-driven studies of the underlying metabolic processes and their function

    Integration of Mass Spectrometry Imaging and Machine Learning Visualizes Region-Specific Age-Induced and Drug-Target Metabolic Perturbations in the Brain

    No full text
    Detailed metabolic imaging of specific brain regions in early aging may expose pathophysiological mechanisms and indicate effective neuropharmacological targets in the onset of cognitive decline. Comprehensive imaging of brain aging and drug-target effects is restricted using conventional methodology. We simultaneously visualized multiple metabolic alterations induced by normal aging in specific regions of mouse brains by integrating Fourier-transform ion cyclotron resonance mass spectrometry imaging and combined supervised and unsupervised machine learning models. We examined the interplay between aging and the response to tacrine-induced acetylcholinesterase inhibition, a well-characterized therapeutic treatment against dementia. The dipeptide carnosine (β-alanyl-l-histidine) and the vitamin α-tocopherol were significantly elevated by aging in different brain regions. l-Carnitine and acetylcholine metabolism were found to be major pathways affected by aging and tacrine administration in a brain region-specific manner, indicating altered mitochondrial function and neurotransmission. The highly interconnected hippocampus and retrosplenial cortex displayed different age-induced alterations in lipids and acylcarnitines, reflecting diverse region-specific metabolic effects. The subregional differences observed in the hippocampal formation of several lipid metabolites demonstrate the unique potential of the technique compared to standard mass spectrometry approaches. An age-induced increase of endogenous antioxidants, such as α-tocopherol, in the hippocampus was detected, suggesting an augmentation of neuroprotective mechanisms in early aging. Our comprehensive imaging approach visualized heterogeneous age-induced metabolic perturbations in mitochondrial function, neurotransmission, and lipid signaling, not always attenuated by acetylcholinesterase inhibition
    corecore