25 research outputs found

    Autoimmune Hemolytic Anemia in the Pediatric Setting

    No full text
    Autoimmune hemolytic anemia (AIHA) is a rare disease in children, presenting with variable severity. Most commonly, warm-reactive IgG antibodies bind erythrocytes at 37 °C and induce opsonization and phagocytosis mainly by the splenic macrophages, causing warm AIHA (w-AIHA). Post-infectious cold-reactive antibodies can also lead to hemolysis following the patient’s exposure to cold temperatures, causing cold agglutinin syndrome (CAS) due to IgM autoantibodies, or paroxysmal cold hemoglobinuria (PCH) due to atypical IgG autoantibodies which bind their target RBC antigen and fix complement at 4 °C. Cold-reactive antibodies mainly induce intravascular hemolysis after complement activation. Direct antiglobulin test (DAT) is the gold standard for AIHA diagnosis; however, DAT negative results are seen in up to 11% of warm AIHA, highlighting the need to pursue further evaluation in cases with a phenotype compatible with immune-mediated hemolytic anemia despite negative DAT. Prompt supportive care, initiation of treatment with steroids for w-AIHA, and transfusion if necessary for symptomatic or fast-evolving anemia is crucial for a positive outcome. w-AIHA in children is often secondary to underlying immune dysregulation syndromes and thus, screening for such disorders is recommended at presentation, before initiating treatment with immunosuppressants, to determine prognosis and optimize long-term management potentially with novel targeted medications

    Autoimmune Hemolytic Anemia in the Pediatric Setting

    No full text
    Autoimmune hemolytic anemia (AIHA) is a rare disease in children, presenting with variable severity. Most commonly, warm-reactive IgG antibodies bind erythrocytes at 37 °C and induce opsonization and phagocytosis mainly by the splenic macrophages, causing warm AIHA (w-AIHA). Post-infectious cold-reactive antibodies can also lead to hemolysis following the patient’s exposure to cold temperatures, causing cold agglutinin syndrome (CAS) due to IgM autoantibodies, or paroxysmal cold hemoglobinuria (PCH) due to atypical IgG autoantibodies which bind their target RBC antigen and fix complement at 4 °C. Cold-reactive antibodies mainly induce intravascular hemolysis after complement activation. Direct antiglobulin test (DAT) is the gold standard for AIHA diagnosis; however, DAT negative results are seen in up to 11% of warm AIHA, highlighting the need to pursue further evaluation in cases with a phenotype compatible with immune-mediated hemolytic anemia despite negative DAT. Prompt supportive care, initiation of treatment with steroids for w-AIHA, and transfusion if necessary for symptomatic or fast-evolving anemia is crucial for a positive outcome. w-AIHA in children is often secondary to underlying immune dysregulation syndromes and thus, screening for such disorders is recommended at presentation, before initiating treatment with immunosuppressants, to determine prognosis and optimize long-term management potentially with novel targeted medications

    Phylogenetic and Ontogenetic View of Erythroblastic Islands

    No full text
    Erythroblastic islands are a hallmark of mammalian erythropoiesis consisting of a central macrophage surrounded by and interacting closely with the maturing erythroblasts. The macrophages are thought to serve many functions such as supporting erythroblast proliferation, supplying iron for hemoglobin, promoting enucleation, and clearing the nuclear debris; moreover, inhibition of erythroblastic island formation is often detrimental to erythropoiesis. There is still much not understood about the role that macrophages and microenvironment play in erythropoiesis and insights may be gleaned from a comparative analysis with erythropoietic niches in nonmammalian vertebrates which, unlike mammals, have erythrocytes that retain their nucleus. The phylogenetic development of erythroblastic islands in mammals in which the erythrocytes are anucleate underlines the importance of the macrophage in erythroblast enucleation

    Rasa3 regulates stage-specific cell cycle progression in murine erythropoiesis.

    No full text
    Inherited bone marrow failure syndromes (IBMFS) are heterogeneous disorders characterized by dysregulated hematopoiesis in various lineages, developmental anomalies, and predisposition to malignancy. The scat (severe combined anemia and thrombocytopenia) mouse model is a model of IBMFS with a phenotype of pancytopenia cycling through crises and remission. Scat carries an autosomal recessive missense mutation in Rasa3 that results in RASA3 mislocalization and loss of function. RASA3 functions as a Ras-GTPase activating protein (GAP), and its loss of function in scat results in increased erythroid RAS activity and reactive oxygen species (ROS) and altered erythroid cell cycle progression, culminating in delayed terminal erythroid differentiation. Here we sought to further resolve the erythroid cell cycle defect in scat through ex vivo flow cytometric analyses. These studies revealed a specific G0/G1 accumulation in scat bone marrow (BM) polychromatophilic erythroblasts and scat BM Ter11

    Unraveling Macrophage Heterogeneity in Erythroblastic Islands

    Get PDF
    Mammalian erythropoiesis occurs within erythroblastic islands (EBIs), niches where maturing erythroblasts interact closely with a central macrophage. While it is generally accepted that EBI macrophages play an important role in erythropoiesis, thorough investigation of the mechanisms by which they support erythropoiesis is limited largely by inability to identify and isolate the specific macrophage sub-population that constitute the EBI. Early studies utilized immunohistochemistry or immunofluorescence to study EBI morphology and structure, while more recent efforts have used flow cytometry for high-throughput quantitative characterization of EBIs and their central macrophages. However, these approaches based on the expectation that EBI macrophages are a homogeneous population (F4/80+/CD169+/VCAM-1+ for example) provide an incomplete picture and potentially overlook critical information about the nature and biology of the islands and their central macrophages. Here, we present a novel method for analysis of EBI macrophages from hematopoietic tissues of mice and rats using multispectral imaging flow cytometry (IFC), which combines the high-throughput advantage of flow cytometry with the morphological and fluorescence features derived from microscopy. This method provides both quantitative analysis of EBIs, as well as structural and morphological details of the central macrophages and associated cells. Importantly, the images, combined with quantitative software features, can be used to evaluate co-expression of phenotypic markers which is crucial since some antigens used to identify macrophages (e.g., F4/80 and CD11b) can be expressed on non-erythroid cells associated with the islands instead of, or in addition to the central macrophage itself. We have used this method to analyze native EBIs from different hematopoietic tissues and evaluated the expression of several markers that have been previously reported to be expressed on EBI macrophages. We found that VCAM-1, F4/80, and CD169 are expressed heterogeneously by the central macrophages within the EBIs, while CD11b, although abundantly expressed by cells within the islands, is not expressed on the EBI macrophages. Moreover, differences in the phenotype of EBIs in rats compared to mice point to potential functional differences between these species. These data demonstrate the usefulness of IFC in analysis and characterization of EBIs and more importantly in exploring the heterogeneity and plasticity of EBI macrophages

    Rac GTPases regulate the morphology and deformability of the erythrocyte cytoskeleton

    No full text
    Actin oligomers are a significant structural component of the erythrocyte cytoskeleton. Rac1 and Rac2 GTPases regulate actin structures and have multiple overlapping as well as distinct roles in hematopoietic cells; therefore, we studied their role in red blood cells (RBCs). Conditional gene targeting with a loxP-flanked Rac1 gene allowed Crerecombinase–induced deletion of Rac1 on a Rac2 null genetic background. The Rac1–/–;Rac2–/– mice developed microcytic anemia with a hemoglobin drop of about 20% and significant anisocytosis and poikilocytosis. Reticulocytes increased more than 2-fold. Rac1–/–;Rac2–/– RBCs stained with rhodamine-phalloidin demonstrated F-actin meshwork gaps and aggregates under confocal microscopy. Transmission electron microscopy of the cytoskeleton demonstrated junctional aggregates and pronounced irregularity of the hexagonal spectrin scaffold. Ektacytometry confirmed that these cytoskeletal changes in Rac1–/–;Rac2–/– erythrocytes were associated with significantly decreased cellular deformability. The composition of the cytoskeletal proteins was altered with an increased actin-to-spectrin ratio and increased phosphorylation (Ser724) of adducin, an F-actin capping protein. Actin and phosphorylated adducin of Rac1–/–;Rac2–/– erythrocytes were more easily extractable by Triton X-100, indicating weaker association to the cytoskeleton. Thus, deficiency of Rac1 and Rac2 GTPases in mice alters actin assembly in RBCs and causes microcytic anemia with reticulocytosis, implicating Rac GTPases as dynamic regulators of the erythrocyte cytoskeleton organization

    Autism-associated chromatin remodeler CHD8 regulates erythroblast cytokinesis and fine-tunes the balance of Rho GTPase signaling

    No full text
    CHD8 is an ATP-dependent chromatin-remodeling factor whose monoallelic mutation defines a subtype of autism spectrum disorders (ASDs). Previous work found that CHD8 is required for the maintenance of hematopoiesis by integrating ATM-P53-mediated survival of hematopoietic stem/progenitor cells (HSPCs). Here, by using Chd8F/FMx1-Cre combined with a Trp53F/F mouse model that suppresses apoptosis of Chd8-/- HSPCs, we identify CHD8 as an essential regulator of erythroid differentiation. Chd8-/-P53-/- mice exhibited severe anemia conforming to congenital dyserythropoietic anemia (CDA) phenotypes. Loss of CHD8 leads to drastically decreased numbers of orthochromatic erythroblasts and increased binucleated and multinucleated basophilic erythroblasts with a cytokinesis failure in erythroblasts. CHD8 binds directly to the gene bodies of multiple Rho GTPase signaling genes in erythroblasts, and loss of CHD8 results in their dysregulated expression, leading to decreased RhoA and increased Rac1 and Cdc42 activities. Our study shows that autism-associated CHD8 is essential for erythroblast cytokinesis
    corecore