21 research outputs found

    Myomas and Adenomyosis: Impact on Reproductive Outcome

    No full text
    Among uterine structural abnormalities, myomas and adenomyosis represent two distinct, though frequently coexistent entities, with a remarkable prevalence in women of reproductive age. Various mechanisms have been proposed to explain the impact of each of them on reproductive outcome. In respect to myomas, current evidence implies that submucosal ones have an adverse effect on conception and early pregnancy. A similar effect yet is not quite clear and has been suggested for intramural myomas. Still, it seems reasonable that intramural myomas greater than 4 cm in diameter may negatively impair reproductive outcome. On the contrary, subserosal myomas do not seem to have a significant impact, if any, on reproduction. The presence of submucosal and/or large intramural myomas has also been linked to adverse pregnancy outcomes. In particular increased risk for miscarriage, fetal malpresentation, placenta previa, preterm birth, placenta abruption, postpartum hemorrhage, and cesarean section has been reported. With regard to adenomyosis, besides the tentative coexistence of adenomyosis and infertility, to date a causal relationship among these conditions has not been fully confirmed. Preterm birth and preterm premature rupture of membranes, uterine rupture, postpartum hemorrhage due to uterine atony, and ectopic pregnancy have all been reported in association with adenomyosis. Further research on the impact of adenomyosis on reproductive outcome is welcome. © 2017 Nikos F. Vlahos et al

    Determination of bisphenol A in canned food by microwave assisted extraction, molecularly imprinted polymer-solid phase extraction and liquid chromatography-mass spectrometry

    No full text
    Bisphenol A (BPA), a known potential endocrine disrupting compound (EDC) is expected to be present in low quantities in canned food due to its migration from the inner surface coating of cans made of epoxy resins. A selective and confirmatory analytical method, based on microwave assisted extraction (MAE), molecularly imprinted solid phase extraction (MISPE) using a polymer prepared by a non-covalent molecular imprinting technique and liquid chromatography coupled with electrospray ionization mass spectrometry (LC-ESI/MS) was developed for the determination of BPA in canned pineapple, tuna and mushrooms. First, the effect of the loading medium of hydro- organic solutions on the binding of BPA and its deuterated analogue on the MISPE sorbent was investigated. Subsequently, the effects of the experimental conditions of the microwave assisted extraction (solvent, sample mass/solvent volume, time and temperature) on the obtained recovery of BPA from canned food were assessed and the parameters were optimized to provide maximum recovery and selectivity. It was demonstrated that the combination of MAE with MISPE permits the use of a selective extraction solvent (methanol/water, 4/6, v/v), simplifying the sample preparation steps and enhancing sample clean-up of complex food matrices. The method was validated in different food matrices, using BPA-d16 as internal standard and quantitative relative recoveries were determined. The precision (RSD %) of the method ranged from 7% to 10% and the limit of detection was at low ng/g level for all food matrices. The determined concentration of BPA in commercial canned samples ranged between 7.3 and 42.3 ng/g. © 2019 Elsevier B.V

    Molecularly imprinted polymers for bisphenol A for HPLC and SPE from water and milk

    No full text
    Molecularly imprinted polymers (MIPs) for bisphenol A (BPA) were prepared by two synthetic routes: semi-covalent and noncovalent methodology. The molecular imprinting effect was evaluated using the polymers in HPLC and SPE. Polymers prepared with noncovalent mode were proven more effective. These polymers were applied in SPE facilitating selective retention of BPA from bottled water and milk. The developed sample preparation was simple and efficient comprising only dilution of milk and MISPE prior to LC-MS analysis. Overall MISPE enhanced sample clean-up. Compared with control nonimprinted polymers and conventional C18 SPE cartridges, the MIPs exhibited selective analyte recognition. The method provided quantitative BPA recoveries, very good reproducibility (% RSDs lower than 7%), and low LOD (0.2 ng/g). MIP interacts similarly with deuterated BPA allowing its use as internal standard in LC-MS. The most critical parameters of MISPE were the organic content in loading-washing medium and the washing volume. Low flow rates in the elution step enhanced extraction recovery. Important advantages of the MIP were: the high breakthrough volumes (> 500 mL of water), high mass capacity (> 10 ng/mg of MIP sorbent), good linearity, and good stability in performance for over 35 cycles of use. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Dimethylglycine supplementation in reduced energy broilers’ diets restores performance by improving nutrient digestibility

    No full text
    Reducing the energy content of broiler diets could lead to the formulation of diets with reduced production cost. Dimethylgycine (DMG) has been used as a dietary supplement to enhance dietary fat utilization in poultry. The objective of the present study was to investigate the effects of DMG supplementation in reduced energy diets on performance and nutrient digestibility in broiler chickens. Four hundred and eighty day-old broilers were randomly allocated to three dietary treatments: a standard energy diet (PC treatment), a reduced energy diet by 66 kcal/kg (NC treatment) and the reduced energy diet supplemented with 500 mg/kg of DMG (DMG treatment). Fat digestibility was significantly higher in DMG group, compared to PC and NC groups. Intestines and gizzard lesion scores were found to be lower in the DMG group compared to PC. DMG supplementation resulted in lower jejunum pH and ileum viscosity in broilers. Overall, the present study showed that DMG supplementation in reduced energy broiler diets restored growth performance to the levels obtained with a standard diet. This result was probably mediated by the positive effects on the gastrointestinal function of the broilers after DMG supplementation, as evidenced by the improved nutrient digestibility, the reduced gross lesion scores and the lower values in intestinal pH and viscosity. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    1H NMR-based metabonomic investigation of the effect of two different exercise sessions on the metabolic fingerprint of human urine

    No full text
    Physical exercise modifies animal metabolism profoundly. Until recently, biochemical investigations related to exercise focused on a small number of biomolecules. In the present study, we used a holistic analytical approach to investigate changes in the human urine metabolome elicited by two exercise sessions differing in the duration of the rest interval between repeated efforts. Twelve men performed three sets of two 80 m maximal runs separated by either 10 s or 1 min of rest. Analysis of pre- and postexercise urine samples by 1H NMR spectroscopy and subsequent multivariate statistical analysis revealed alterations in the levels of 22 metabolites. Urine samples were safely classified according to exercise protocol even when applying unsupervised methods of statistical analysis. Separation of pre- from postexercise samples was mainly due to lactate, pyruvate, hypoxanthine, compounds of the Krebs cycle, amino acids, and products of branched-chain amino acid (BCAA) catabolism. Separation of the two rest intervals was mainly due to lactate, pyruvate, alanine, compounds of the Krebs cycle, and 2-oxoacids of BCAA, all of which increased more with the shorter interval. Metabonomics provides a powerful methodology to gain insight in metabolic changes induced by specific training protocols and may thus advance our knowledge of exercise biochemistry. © 2010 American Chemical Society

    1H NMR study on the short-and long-term impact of two training programs of sprint running on the metabolic fingerprint of human serum

    No full text
    Metabonomics is an established strategy in the exploration of the effects of various stimuli on the metabolic fingerprint of biofluids. Here, we present an application of 1H NMRbased metabonomics on the field of exercise biochemistry. Fourteen men were assigned to either of two training programs, which lasted 8 weeks and involved sets of 80-m maximal runs separated by either 10 s or 1 min of rest. Analysis of pre-and postexercise serum samples, both at the beginning and end of training, by 1H NMR spectroscopy and subsequent multivariate statistical techniques revealed alterations in the levels of 18 metabolites. Validated O-PLS models could classify the samples in regard to exercise, the separation being mainly due to lactate, pyruvate, alanine, leucine, valine, isoleucine, arginine/lysine, glycoprotein acetyls, and an unidentified metabolite resonating at 8.17 ppm. Samples were also classified safely with respect to training, the separation being mainly due to lactate, pyruvate, methylguanidine, citrate, glucose, valine, taurine, trimethylamine N-oxide, choline-containing compounds, histidines, acetoacetate/acetone, glycoprotein acetyls, and lipids. Samples could not be classified according to the duration of the rest interval between sprints. Our findings underline the power of metabonomics to offer new insights into the short-and long-term impact of exercise on metabolism. © 2012 American Chemical Society

    Targeted Metabolic Profiling of the Tg197 Mouse Model Reveals Itaconic Acid as a Marker of Rheumatoid Arthritis

    No full text
    Rheumatoid arthritis is a progressive, highly debilitating disease where early diagnosis, enabling rapid clinical intervention, would provide obvious benefits to patients, healthcare systems, and society. Novel biomarkers that enable noninvasive early diagnosis of the onset and progression of the disease provide one route to achieving this goal. Here a metabolic profiling method has been applied to investigate disease development in the Tg197 arthritis mouse model. Hind limb extract profiling demonstrated clear differences in metabolic phenotypes between control (wild type) and Tg197 transgenic mice and highlighted raised concentrations of itaconic acid as a potential marker of the disease. These changes in itaconic acid concentrations were moderated or indeed reversed when the Tg197 mice were treated with the anti-hTNF biologic infliximab (10 mg/kg twice weekly for 6 weeks). Further in vitro studies on synovial fibroblasts obtained from healthy wild-type, arthritic Tg197, and infliximab-treated Tg197 transgenic mice confirmed the association of itaconic acid with rheumatoid arthritis and disease-moderating drug effects. Preliminary indications of the potential value of itaconic acid as a translational biomarker were obtained when studies on K4IM human fibroblasts treated with hTNF showed an increase in the concentrations of this metabolite. © 2016 American Chemical Society

    Particle Swarm Optimization approach for fuzzy cognitive maps applied to autism classification

    No full text
    The task of classification using intelligent methods and learning algorithms is a difficult task leading the research community on finding new classifications techniques to solve it. In this work, a new approach based on particle swarm optimization (PSO) clustering is proposed to perform the fuzzy cognitive map learning for classification performance. Fuzzy cognitive map (FCM) is a simple, but also powerful computational intelligent technique which is used for the adoption of the human knowledge and/or historical data, into a simple mathematical model for system modeling and analysis. The aim of this study is to investigate a new classification algorithm for the autism disorder problem by integrating the Particle Swarm Optimization method (PSO) in FCM learning, thus producing a higher performance classification tool regarding the accuracy of the classification, and overcoming the limitations of FCMs in the pattern analysis area. © IFIP International Federation for Information Processing 2013

    Amniotic Fluid and Maternal Serum Metabolic Signatures in the Second Trimester Associated with Preterm Delivery

    No full text
    Preterm delivery (PTD) represents a major health problem that occurs in 1 in 10 births. The hypothesis of the present study was that the metabolic profile of different biological fluids, obtained from pregnant women during the second trimester of gestation, could allow useful correlations with pregnancy outcome. Holistic and targeted metabolomics approaches were applied for the complementary assessment of the metabolic content of prospectively collected amniotic fluid (AF) and paired maternal blood serum samples from 35 women who delivered preterm (between 29 weeks + 0 days and 36 weeks +5 days gestation) and 35 women delivered at term. The results revealed trends relating the metabolic content of the analyzed samples with preterm delivery. Untargeted and targeted profiling showed differentiations in certain key metabolites in the biological fluids of the two study groups. In AF, intermediate metabolites involved in energy metabolism (pyruvic acid, glutamic acid, and glutamine) were found to contribute to the classification of the two groups. In maternal serum, increased levels of lipids and alterations of key end-point metabolites were observed in cases of preterm delivery. Overall, the metabolic content of second-trimester AF and maternal blood serum shows potential for the identification of biomarkers related to fetal growth and preterm delivery. © 2017 American Chemical Society

    Amniotic fluid and maternal serum metabolic signatures in the second trimester associated with preterm delivery.

    No full text
    Preterm delivery (PTD) represents a major health problem that occurs in 1 in 10 births. The hypothesis of the present study was that the metabolic profile of different biological fluids, obtained from pregnant women during the second trimester of gestation, could allow useful correlations with pregnancy outcome. Holistic and targeted metabolomics approaches were applied for the complementary assessment of the metabolic content of prospectively collected amniotic fluid (AF) and paired maternal blood serum samples from 35 women who delivered preterm (between 29 weeks + 0 days and 36 weeks +5 days gestation) and 35 women delivered at term. The results revealed trends relating the metabolic content of the analyzed samples with preterm delivery. Untargeted and targeted profiling showed differentiations in certain key metabolites in the biological fluids of the two study groups. In AF, intermediate metabolites involved in energy metabolism (pyruvic acid, glutamic acid, and glutamine) were found to contribute to the classification of the two groups. In maternal serum, increased levels of lipids and alterations of key end-point metabolites were observed in cases of preterm delivery. Overall, the metabolic content of second-trimester AF and maternal blood serum shows potential for the identification of biomarkers related to fetal growth and preterm delivery
    corecore