43 research outputs found

    Luminescence and Scintillation in the Niobium Doped Oxyfluoride Rb\u3csub\u3e4\u3c/sub\u3eGe\u3csub\u3e5\u3c/sub\u3eO\u3csub\u3e9\u3c/sub\u3eF\u3csub\u3e6\u3c/sub\u3e:Nb

    Get PDF
    A new niobium-doped inorganic scintillating oxyfluoride, Rb4Ge5O9F6:Nb, was synthe-sized in single crystal form by high-temperature flux growth. The host structure, Rb4Ge5O9F6, crystal-lizes in the orthorhombic space groupPbcnwith lattice parametersa= 6.98430(10)Å,b= 11.7265(2) Å,andc= 19.2732(3) Å, consisting of germanium oxyfluoride layers made up of Ge3O9units connectedby GeO3F3octahedra. In its pure form, Rb4Ge5O9F6shows neither luminescence nor scintillation butwhen doped with niobium, Rb4Ge5O9F6:Nb exhibits bright blue luminescence and scintillation. Theisostructural doped structure, Rb4Ge5O9F6:Nb, crystallizes in the orthorhombic space groupPbcnwith lattice parametersa= 6.9960(3) Å,b= 11.7464(6) Å, andc= 19.3341(9) Å. X-ray absorption nearedge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements suggestthat the niobium is located in an octahedral coordination environment. Optical measurements informus that the niobium dopant acts as the activator. The synthesis, structure, and optical properties arereported, including radioluminescence (RL) measurements under X-ray irradiation

    Luminescence and Scintillation in the Niobium Doped Oxyfluoride Rb\u3csub\u3e4\u3c/sub\u3eGe\u3csub\u3e5\u3c/sub\u3eO\u3csub\u3e9\u3c/sub\u3eF\u3csub\u3e6\u3c/sub\u3e:Nb

    Get PDF
    A new niobium-doped inorganic scintillating oxyfluoride, Rb4Ge5O9F6:Nb, was synthesized in single crystal form by high-temperature flux growth. The host structure, Rb4Ge5O9F6, crystallizes in the orthorhombic space group Pbcn with lattice parameters a = 6.98430(10) Å, b = 11.7265(2) Å, and c = 19.2732(3) Å, consisting of germanium oxyfluoride layers made up of Ge3O9 units connected by GeO3F3 octahedra. In its pure form, Rb4Ge5O9F6 shows neither luminescence nor scintillation but when doped with niobium, Rb4Ge5O9F6:Nb exhibits bright blue luminescence and scintillation. The isostructural doped structure, Rb4Ge5O9F6:Nb, crystallizes in the orthorhombic space group Pbcn with lattice parameters a = 6.9960(3) Å, b = 11.7464(6) Å, and c = 19.3341(9) Å. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements suggest that the niobium is located in an octahedral coordination environment. Optical measurements inform us that the niobium dopant acts as the activator. The synthesis, structure, and optical properties are reported, including radioluminescence (RL) measurements under X-ray irradiation

    Luminescence and Scintillation in the Niobium Doped Oxyfluoride Rb\u3csub\u3e4\u3c/sub\u3eGe\u3csub\u3e5\u3c/sub\u3eO\u3csub\u3e9\u3c/sub\u3eF\u3csub\u3e6\u3c/sub\u3e:Nb

    Get PDF
    A new niobium-doped inorganic scintillating oxyfluoride, Rb4Ge5O9F6:Nb, was synthesized in single crystal form by high-temperature flux growth. The host structure, Rb4Ge5O9F6, crystallizes in the orthorhombic space group Pbcn with lattice parameters a = 6.98430(10) Å, b = 11.7265(2) Å, and c = 19.2732(3) Å, consisting of germanium oxyfluoride layers made up of Ge3O9 units connected by GeO3F3 octahedra. In its pure form, Rb4Ge5O9F6 shows neither luminescence nor scintillation but when doped with niobium, Rb4Ge5O9F6:Nb exhibits bright blue luminescence and scintillation. The isostructural doped structure, Rb4Ge5O9F6:Nb, crystallizes in the orthorhombic space group Pbcn with lattice parameters a = 6.9960(3) Å, b = 11.7464(6) Å, and c = 19.3341(9) Å. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements suggest that the niobium is located in an octahedral coordination environment. Optical measurements inform us that the niobium dopant acts as the activator. The synthesis, structure, and optical properties are reported, including radioluminescence (RL) measurements under X-ray irradiation

    Evidence-based Kernels: Fundamental Units of Behavioral Influence

    Get PDF
    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF
    corecore