92 research outputs found

    A new, temporarily confined population in the polar cap during the August 27, 1996 geomagnetic field distortion period

    Get PDF
    On August 27, 1996, a two-hour energetic heavy ion event (∼1 MeV) was detected at 8:25 UT at apogee (∼9 Re and an invariant latitude of ∼80°), by the Charge and Mass Magnetospheric Ion Composition Experiment onboard POLAR. The event, with a maximum spin averaged peak flux of ∼150 particles/(cm²-sr-s-MeV), showed three local peaks corresponding to three localized regions; the ion pitch angle distributions in the three regions were different from an isotropic distribution and different from each other. No comparable flux was observed by the WIND spacecraft. The appearance of lower energy He++ and O \u3e +2 during the event period indicates a solar source for these particles. From region 1 to 2 to 3, the helium energy spectra softened. A distorted magnetic field with three local minima corresponding to the three He peak fluxes was also observed by POLAR. A possible explanation is that the energetic He ions were energized from lower energy helium by a local acceleration mechanism that preferred smaller rigidity ions in the high altitude polar cusp region

    Cusp energetic particle events: Implications for a major acceleration region of the magnetosphere

    Get PDF
    The Charge and Mass Magnetospheric Ion Composition Experiment (CAMMICE) on board the Polar spacecraft observed 75 energetic particle events in 1996 while the satellite was at apogee. All of these events were associated with a decrease in the magnitude of the local magnetic field measured by the Magnetic Field Experiment (MFE) on Polar. These new events showed several unusual features: (1) They were detected in the dayside polar cusp near the apogee of Polar with about 79% of the total events in the afternoonside and 21% in the morningside; (2) an individual event could last for hours; (3) the measured helium ion had energies up to and many times in excess of 2.4 MeV; (4) the intensity of 1–200 KeV/e helium was anticorrelated with the magnitude of the local geomagnetic field but correlated with the turbulent magnetic energy density; (5) the events were associated with an enhancement of the low-frequency magnetic noise, the spectrum of which typically extends from a few hertz to a few hundreds of hertz as measured by the Plasma Wave Instrument (PWI) on Polar; and (6) a seasonal variation was found for the occurrence rate of the events with a maximum in September. These characterized a new phenomenon which we are calling cusp energetic particle (CEP) events. The observed high charge state of helium and oxygen ions in the CEP events indicates a solar source for these particles. Furthermore, the measured 0.52–1.15 MeV helium flux was proportional to the difference between the maximum and the minimum magnetic field in the event. A possible explanation is that the energetic helium ions are energized from lower energy helium by a local acceleration mechanism associated with the high-altitude dayside cusp. These observations represent a potential discovery of a major acceleration region of the magnetosphere

    Sterile Debates and Dubious Generalisations: An Empirical Critique of European Integration Theory Based on the Integration Processes in Telecommunications and Electricity

    Full text link

    The Magnetospheric Cusps: Structure and Dynamics

    No full text
    This collection of papers will address the question "What is the Magnetospheric Cusp?" and what is its role in the coupling of the solar wind to the magnetosphere as well as its role in the processes of particle transport and energization within the magnetosphere. The cusps have traditionally been described as narrow funnel-shaped regions that provide a focus of the Chapman-Ferraro currents that flow on the magnetopause, a boundary between the cavity dominated by the geomagnetic field (i.e., the magnetosphere) and the external region of the interplanetary medium. Measurements from a number of recent satellite programs have shown that the cusp is not confined to a narrow region near local noon but appears to encompass a large portion of the dayside high-latitude magnetosphere and it appears that the cusp is a major source region for the production of energetic charged particles for the magnetosphere. Audience: This book will be of interest to space science research organizations in governments and industries, the community of Space Physics scientists and university departments of physics, astronomy, space physics, and geophysics

    Regional shifts in the Bituminous coal industry with special reference to Pennsylvania

    No full text
    Bibliography: p. 185-186.Mode of access: Internet

    Sildenafil treatment attenuates ventricular remodeling in an experimental model of aortic regurgitation

    Get PDF
    BACKGROUND: Currently there is no reliable medical treatment for aortic regurgitation (AR). METHODS: Thirty-nine Sprague–Dawley rats underwent creation of AR or sham operation. Treated rats were assigned to early or late institution of sildenafil therapy (100 mg/kg/day) for a total of 10 weeks. Treatment–effects were measured by serial echocardiography, invasive hemodynamic measurements, and tissue analysis. RESULTS: Rats assigned to early treatment developed less remodeling than untreated rats. Thus, left ventricular (LV) dilation was blunted by sildenafil with end–systolic diameter being significantly smaller (6.6 ± 0.4 vs. 7.7 ± 0.4 mm, respectively, p < 0.05). Also, LV wall thickness was significantly decreased in treated rats compared to controls (2.23 ± 0.08 vs. 2.16 ± 0.05 mm, p < 0.01). Fractional shortening was improved by treatment (p < 0.05). Myocardial fibrosis was borderline decreased by treatment (p = 0.09). Akt was increased in treated compared to controls (p < 0.05). CONCLUSION: Sildenafil slightly inhibits LV remodeling and improves fractional shortening in rats with AR when treatment is initiated early
    corecore