25 research outputs found
Modelling the superspreading of surfactant-laden droplets with computer simulation
The surfactant-driven superspreading of droplets on hydrophobic substrates is considered. A key element of the superspreading mechanism is the adsorption of surfactant molecules from the liquid-vapour interface onto the substrate through the contact line, which must be coordinated with the replenishment of interfaces with surfactant from the interior of the droplet. We use molecular dynamics simulations with coarse-grained force fields to provide a detailed structural description of the droplet shape and surfactant dynamics during the superspreading process. We also provide a simple method for accurate estimation of the contact angle subtended by the droplets at the contact line
Multiscale Simulation of Fluids: Coupling Molecular and Continuum
This is an arXiv preprint which has not been certified by peer review. 21 pages, 8 figures perspective paper submitted to Physical Chemistry Chemical Physics (PCCP) published by Royal Society of Chemistry (RSC),
(Print ISSN: 1463-9076, Electronic ISSN: 1463-9084).Computer simulation is an important tool for scientific progress, especially when lab experiments are either extremely costly and difficult or lack the required resolution. However, all of the simulation methods come with limitations. In molecular dynamics (MD) simulation, the length and time scales that can be captured are limited, while computational fluid dynamics (CFD) methods are built on a range of assumptions, from the continuum hypothesis itself, to a variety of closure assumptions. To address these issues, the coupling of different methodologies provides a way to retain the best of both methods. Here, we provide a perspective on multiscale simulation based on the coupling of MD and CFD with each a distinct part of the simulation domain. This style of coupling allows molecular detail to be present only where it is needed, so CFD can model larger scales than possible with MD alone. We present a unified perspective of the literature, showing the links between state and flux coupling and discuss the various assumptions required for both. A unique challenge in such coupled simulation is obtaining averages and constraining local parts of a molecular simulation. We highlight that incorrect localisation has resulted in an error in the literature for both pressure tensor and coupling constraints. We then finish with some applications, focused on the simulation of fluids. Thus, we hope to motivate further research in this exciting area with applications across the spectrum of scientific disciplines...
Spreading of aqueous droplets with common and superspreading surfactants. A molecular dynamics study
arXiv:1909.00775 [physics.flu-dyn] preprint [v1] Mon, 2 Sep 2019 15:55:46 UTC (8,139 KB) submitted to Colloids and Surfaces A: Physicochemical and Engineering Aspects 581, 123810 (2019) DOI:
https://doi.org/10.1016/j.colsurfa.2019.12381The surfactant-driven spreading of droplets is an essential process in many applications ranging from coating flow technology to enhanced oil recovery. Despite the significant advancement in describing spreading processes in surfactant-laden droplets, including the exciting phenomena of superspreading, many features of the underlying mechanisms require further understanding. Here, we have carried out molecular dynamics simulations of a coarse-grained model with a force-field obtained from the statistical associating fluid theory to study droplets laden with common and superspreading surfactants. We have confirmed the important elements of the superspreading mechanism, i.e. the adsorption of surfactant at the contact line and the fast replenishment of surfactant from the bulk. Through a detailed comparison of a range of droplets with different surfactants, our analysis has indicated that the ability of surfactant to adsorb at the interfaces is the key feature of the superspreading mechanism. To this end, surfactants that tend to form aggregates and have a strong hydrophobic attraction in the aggregated cores prevent the fast replenishment of the interfaces, resulting in reduced spreading ability. We also show that various surfactant properties, such as diffusion and architecture, play a secondary role in the spreading process. Moreover, we discuss various drop properties such as the height, contact angle, and surfactant surface concentration, highlighting differences between superspreading and common surfactants. We anticipate that our study will provide further insight for applications requiring the control of wetting.This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 778104. E.A.M. acknowledges partial support from the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. through grants EP/I018212, EP/J010502, and EP/R013152. This research was supported in part by PLGrid Infrastructure
Molecular dynamics simulation of the superspreading of surfactant-laden droplets. A review
© 2019 by the authors. Superspreading is the rapid and complete spreading of surfactant-laden droplets on hydrophobic substrates. This phenomenon has been studied for many decades by experiment, theory, and simulation, but it has been only recently that molecular-level simulation has provided significant insights into the underlying mechanisms of superspreading thanks to the development of accurate force-fields and the increase of computational capabilities. Here, we review the main advances in this area that have surfaced from Molecular Dynamics simulation of all-atom and coarse-grained models highlighting and contrasting the main results and discussing various elements of the proposed mechanisms for superspreading. We anticipate that this review will stimulate further research on the interpretation of experimental results and the design of surfactants for applications requiring efficient spreading, such as coating technology.European Union’s Horizon 2020 research and innovation programme (Marie Skłodowska-Curie grant agreement No. 778104
Structural Basis for Apoptosis Inhibition by Epstein-Barr Virus BHRF1
Epstein-Barr virus (EBV) is associated with human malignancies, especially those affecting the B cell compartment such as Burkitt lymphoma. The virally encoded homolog of the mammalian pro-survival protein Bcl-2, BHRF1 contributes to viral infectivity and lymphomagenesis. In addition to the pro-apoptotic BH3-only protein Bim, its key target in lymphoid cells, BHRF1 also binds a selective sub-set of pro-apoptotic proteins (Bid, Puma, Bak) expressed by host cells. A consequence of BHRF1 expression is marked resistance to a range of cytotoxic agents and in particular, we show that its expression renders a mouse model of Burkitt lymphoma untreatable. As current small organic antagonists of Bcl-2 do not target BHRF1, the structures of it in complex with Bim or Bak shown here will be useful to guide efforts to target BHRF1 in EBV-associated malignancies, which are usually associated with poor clinical outcomes
Moving contact lines: linking molecular dynamics and continuum-scale modeling
Despite decades of research, the modeling of moving contact lines has remained a formidable challenge in fluid dynamics whose resolution will impact numerous industrial, biological, and daily life applications. On the one hand, molecular dynamics (MD) simulation has the ability to provide unique insight into the microscopic details that determine the dynamic behavior of the contact line, which is not possible with either continuum-scale simulations or experiments. On the other hand, continuum-based models provide a link to the macroscopic description of the system. In this Feature Article, we explore the complex range of physical factors, including the presence of surfactants, which governs the contact line motion through MD simulations. We also discuss links between continuum- and molecular-scale modeling and highlight the opportunities for future developments in this area
Physical insights into the blood-brain barrier translocation mechanisms
The number of individuals suffering from diseases of the central nervous system (CNS) is growing with an aging population. While candidate drugs for many of these diseases are available, most of these pharmaceutical agents cannot reach the brain rendering most of the drug therapies that target the CNS inefficient. The reason is the blood–brain barrier (BBB), a complex and dynamic interface that controls the influx and efflux of substances through a number of different translocation mechanisms. Here, we present these mechanisms providing, also, the necessary background related to the morphology and various characteristics of the BBB. Moreover, we discuss various numerical and simulation approaches used to study the BBB, and possible future directions based on multi-scale methods. We anticipate that this review will motivate multi-disciplinary research on the BBB aiming at the design of effective drug therapies
Task Force on Syncope, European Society of Cardiology.Guidelines on management (diagnosis and treatment) of syncope-update 2004. Executive Summary.
The European Society of Cardiology guidelines for the management (diagnosis and treatment) of syncope were published in August 2001. Since then, more clinical trials and observational studies have been published, some of which alter the recommendations made in that document. The panel reconvened in September 2003, made revisions where appropriate and developed the consensus recommendations. This executive summary reports the most important changes.
Furthermore, since the strategies for the assessment of syncope vary widely among physicians and among hospitals in Europe, we recognised the need to coordinate the evaluation of syncope. The panel sought to define ESC standards for the management of syncope and proposed a model of organisation for the evaluation of the syncope patient. A new section was thus added to the document on this topic