468 research outputs found

    Sub-grid variability in ammonia concentrations and dry deposition in an upland landscape

    Get PDF

    Pharmacokinetics and dosage adjustment of cefotiam in renal impaired patients

    Get PDF
    The pharmacokinetics of cefotiam were investigated after intravenous administration of 1 g to 2 healthy volunteers with normal renal function and to 16 patients whose creatinine clearance ranged from 4.7 to 0.11/h (78 to 1.66 ml/min). The elimination half-life varied from 1.1 h in normal subjects to 13 h in patients and the total plasma clearance from 21 to 0.6 1/h (350 to 10 ml/min). The urinary recovery decreased from 62% of the dose in normal subjects to 1.1% in patients, and the renal clearance from 15 to 0.03 l/h (250 to 0.5 ml/min). Plasma and renal clearances of cefotiam correlated well with the creatinine clearance. The dosage schedule for cefotiam in patients with normal renal function can be used in the presence of renal failure when the creatinine clearance is equal to or greater than 1 1/h (16.6 ml/min). For patients whose creatinine clearance is less than 1 1/h, the dose must be decreased to 75% of that for a patient with normal renal function only when it is given every 6 or 8

    Estimation of nitrogen budgets for contrasting catchments at the landscape scale

    Get PDF
    A comprehensive assessment of nitrogen (N) flows at the landscape scale is fundamental to understand spatial interactions in the N cascade and to inform the development of locally optimised N management strategies. To explore these interactions, complete N budgets were estimated for two contrasting hydrological catchments (dominated by agricultural grassland vs. semi-natural peat-dominated moorland), forming part of an intensively studied landscape in southern Scotland. Local scale atmospheric dispersion modelling and detailed farm and field inventories provided high resolution estimations of input fluxes. Direct agricultural inputs (i.e. grazing excreta, N<sub>2</sub> fixation, organic and synthetic fertiliser) accounted for most of the catchment N inputs, representing 82% in the grassland and 62% in the moorland catchment, while atmospheric deposition made a significant contribution, particularly in the moorland catchment, contributing 38% of the N inputs. The estimated catchment N budgets highlighted areas of key uncertainty, particularly N<sub>2</sub> exchange and stream N export. The resulting N balances suggest that the study catchments have a limited capacity to store N within soils, vegetation and groundwater. The "catchment N retention", i.e. the amount of N which is either stored within the catchment or lost through atmospheric emissions, was estimated to be 13% of the net anthropogenic input in the moorland and 61% in the grassland catchment. These values contrast with regional scale estimates: Catchment retentions of net anthropogenic input estimated within Europe at the regional scale range from 50% to 90%, with an average of 82% (Billen et al., 2011). This study emphasises the need for detailed budget analyses to identify the N status of European landscapes

    An optimized single chain TCR scaffold relying on the assembly with the native CD3-complex prevents residual mispairing with endogenous TCRs in human T-cells.

    Get PDF
    Immunotherapy of cancer envisions the adoptive transfer of T-cells genetically engineered with tumor-specific heterodimeric α/β T-cell receptors (TCRα/β). However, potential mispairing of introduced TCRα/β-chains with endogenous β/α-ones may evoke unpredictable autoimmune reactivities. A novel single chain (sc)TCR format relies on the fusion of the Vα-Linker-Vβ-fragment to the TCR Cβ-domain and coexpression of the TCR Cα-domain capable of recruiting the natural CD3-complex for full and hence, native T-cell signaling. Here, we tested whether such a gp100(280-288)- or p53(264-272) tumor antigen-specific scTCR is still prone to mispairing with TCRα. In a human Jurkat-76 T-cell line lacking endogenous TCRs, surface expression and function of a scTCR could be reconstituted by any cointroduced TCRα-chain indicating mispairing to take place on a molecular basis. In contrast, transduction into human TCRα/β-positive T-cells revealed that mispairing is largely reduced. Competition experiments in Jurkat-76 confirmed the preference of dcTCR to selfpair and to spare scTCR. This also allowed for the generation of dc/scTCR-modified cytomegalovirus/tumor antigen-bispecific T-cells to augment T-cell activation in CMV-infected tumor patients. Residual mispairing was prevented by strenghtening the Vα-Li-Vβ-fragment through the design of a novel disulfide bond between a Vα- and a linker-resident residue close to Vβ. Multimer-stainings, and cytotoxicity-, IFNγ-secretion-, and CFSE-proliferation-assays, the latter towards dendritic cells endogenously processing RNA-electroporated gp100 antigen proved the absence of hybrid scTCR/TCRα-formation without impairing avidity of scTCR/Cα in T-cells. Moreover, a fragile cytomegalovirus pp65(495-503)-specific scTCR modified this way acquired enhanced cytotoxicity. Thus, optimized scTCR/Cα inhibits residual TCR mispairing to accomplish safe adoptive immunotherapy for bulk endogenous TCRα/β-positive T-cells

    Preclinical Optimization and Safety Studies of a New Lentiviral Gene Therapy for p47phox-Deficient Chronic Granulomatous Disease

    Get PDF
    Chronic granulomatous disease (CGD) is an inherited blood disorder that renders patients susceptible to infections and inflammation. A recent clinical trial of lentiviral gene therapy for the most frequent form of CGD, X-linked, has demonstrated stable correction over time, with no adverse events related to the gene therapy procedure. We have recently developed a parallel lentiviral vector for p47-deficient CGD (p47phoxCGD), the second most common form of this disease. Using this vector, we have observed biochemical correction of CGD in a mouse model of the disease. In preparation for clinical trial approval, we have performed standardised pre-clinical studies following Good Laboratory Practice (GLP) principles, to assess the safety of the gene therapy procedure. We report no evidence of adverse events, including mutagenesis and tumourigenesis, in human haematopoietic stem cells transduced with the lentiviral vector. Biodistribution studies of transduced human CD34+ cells indicate that the homing properties or engraftment ability of the stem cells is not negatively affected. CD34+ cells derived from a p47phoxCGD patient were subjected to an optimised transduction protocol and transplanted into immunocompromised mice. After the procedure, patient-derived neutrophils resumed NADPH oxidase production in vivo, suggesting that gene correction was successful. These studies pave the way to a first-in-man clinical trial of lentiviral gene therapy for the treatment of p47phoxCGD

    A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics

    Get PDF
    BACKGROUND: Dynamic modeling of metabolic reaction networks under in vivo conditions is a crucial step in order to obtain a better understanding of the (dis)functioning of living cells. So far dynamic metabolic models generally have been based on mechanistic rate equations which often contain so many parameters that their identifiability from experimental data forms a serious problem. Recently, approximative rate equations, based on the linear logarithmic (linlog) format have been proposed as a suitable alternative with fewer parameters. RESULTS: In this paper we present a method for estimation of the kinetic model parameters, which are equal to the elasticities defined in Metabolic Control Analysis, from metabolite data obtained from dynamic as well as steady state perturbations, using the linlog kinetic format. Additionally, we address the question of parameter identifiability from dynamic perturbation data in the presence of noise. The method is illustrated using metabolite data generated with a dynamic model of the glycolytic pathway of Saccharomyces cerevisiae based on mechanistic rate equations. Elasticities are estimated from the generated data, which define the complete linlog kinetic model of the glycolysis. The effect of data noise on the accuracy of the estimated elasticities is presented. Finally, identifiable subset of parameters is determined using information on the standard deviations of the estimated elasticities through Monte Carlo (MC) simulations. CONCLUSION: The parameter estimation within the linlog kinetic framework as presented here allows the determination of the elasticities directly from experimental data from typical dynamic and/or steady state experiments. These elasticities allow the reconstruction of the full kinetic model of Saccharomyces cerevisiae, and the determination of the control coefficients. MC simulations revealed that certain elasticities are potentially unidentifiable from dynamic data only. Addition of steady state perturbation of enzyme activities solved this problem

    Mutation or loss of Wilms' tumor gene 1 (WT1) are not major reasons for immune escape in patients with AML receiving WT1 peptide vaccination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Efficacy of cancer vaccines may be limited due to immune escape mechanisms like loss or mutation of target antigens. Here, we analyzed 10 HLA-A2 positive patients with acute myeloid leukemia (AML) for loss or mutations of the WT1 epitope or epitope flanking sequences that may abolish proper T cell recognition or epitope presentation.</p> <p>Methods</p> <p>All patients had been enrolled in a WT1 peptide phase II vaccination trial (NCT00153582) and ultimately progressed despite induction of a WT1 specific T cell response. Blood and bone marrow samples prior to vaccination and during progression were analyzed for mRNA expression level of WT1. Base exchanges within the epitope sequence or flanking regions (10 amino acids N- and C-terminal of the epitope) were assessed with melting point analysis and sequencing. HLA class I expression and WT1 protein expression was analyzed by flow cytometry.</p> <p>Results</p> <p>Only in one patient, downregulation of WT1 mRNA by 1 log and loss of WT1 detection on protein level at time of disease progression was observed. No mutation leading to a base exchange within the epitope sequence or epitope flanking sequences could be detected in any patient. Further, no loss of HLA class I expression on leukemic blasts was observed.</p> <p>Conclusion</p> <p>Defects in antigen presentation caused by loss or mutation of WT1 or downregulation of HLA molecules are not the major basis for escape from the immune response induced by WT1 peptide vaccination.</p

    Validation of a HLA-A2 tetramer flow cytometric method, IFNgamma real time RT-PCR, and IFNgamma ELISPOT for detection of immunologic response to gp100 and MelanA/MART-1 in melanoma patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HLA-A2 tetramer flow cytometry, IFNγ real time RT-PCR and IFNγ ELISPOT assays are commonly used as surrogate immunological endpoints for cancer immunotherapy. While these are often used as research assays to assess patient's immunologic response, assay validation is necessary to ensure reliable and reproducible results and enable more accurate data interpretation. Here we describe a rigorous validation approach for each of these assays prior to their use for clinical sample analysis.</p> <p>Methods</p> <p>Standard operating procedures for each assay were established. HLA-A2 (A*0201) tetramer assay specific for gp100<sub>209(210M) </sub>and MART-1<sub>26–35(27L)</sub>, IFNγ real time RT-PCR and ELISPOT methods were validated using tumor infiltrating lymphocyte cell lines (TIL) isolated from HLA-A2 melanoma patients. TIL cells, specific for gp100 (TIL 1520) or MART-1 (TIL 1143 and TIL1235), were used alone or spiked into cryopreserved HLA-A2 PBMC from healthy subjects. TIL/PBMC were stimulated with peptides (gp100<sub>209</sub>, gp100<sub>pool</sub>, MART-1<sub>27–35</sub>, or influenza-M1 and negative control peptide HIV) to further assess assay performance characteristics for real time RT-PCR and ELISPOT methods. Validation parameters included specificity, accuracy, precision, linearity of dilution, limit of detection (LOD) and limit of quantification (LOQ). In addition, distribution was established in normal HLA-A2 PBMC samples. Reference ranges for assay controls were established.</p> <p>Results</p> <p>The validation process demonstrated that the HLA-A2 tetramer, IFNγ real time RT-PCR, and IFNγ ELISPOT were highly specific for each antigen, with minimal cross-reactivity between gp100 and MelanA/MART-1. The assays were sensitive; detection could be achieved at as few as 1/4545–1/6667 cells by tetramer analysis, 1/50,000 cells by real time RT-PCR, and 1/10,000–1/20,000 by ELISPOT. The assays met criteria for precision with %CV < 20% (except ELISPOT using high PBMC numbers with %CV < 25%) although flow cytometric assays and cell based functional assays are known to have high assay variability. Most importantly, assays were demonstrated to be effective for their intended use. A positive IFNγ response (by RT-PCR and ELISPOT) to gp100 was demonstrated in PBMC from 3 melanoma patients. Another patient showed a positive MART-1 response measured by all 3 validated methods.</p> <p>Conclusion</p> <p>Our results demonstrated the tetramer flow cytometry assay, IFNγ real-time RT-PCR, and INFγ ELISPOT met validation criteria. Validation approaches provide a guide for others in the field to validate these and other similar assays for assessment of patient T cell response. These methods can be applied not only to cancer vaccines but to other therapeutic proteins as part of immunogenicity and safety analyses.</p

    Semantics-based information extraction for detecting economic events

    Get PDF
    As today's financial markets are sensitive to breaking news on economic events, accurate and timely automatic identification of events in news items is crucial. Unstructured news items originating from many heterogeneous sources have to be mined in order to extract knowledge useful for guiding decision making processes. Hence, we propose the Semantics-Based Pipeline for Economic Event Detection (SPEED), focusing on extracting financial events from news articles and annotating these with meta-data at a speed that enables real-time use. In our implementation, we use some components of an existing framework as well as new components, e.g., a high-performance Ontology Gazetteer, a Word Group Look-Up component, a Word Sense Disambiguator, and components for detecting economic events. Through their interaction with a domain-specific ontology, our novel, semantically enabled components constitute a feedback loop which fosters future reuse of acquired knowledge in the event detection process
    corecore