208 research outputs found

    Similar efficacy outcomes with peripheral blood stem cell versus bone marrow for autologous stem cell transplantation in acute myeloid leukemia: Long-term follow-up of the EORTC-GIMEMA randomized AML-10 trial

    Get PDF
    we report here the long-term follow-up of the only prospective randomized trial of autologous hematopoietic stem cell transplantation (auto-HSCT) with peripheral blood stem cells (APBSCT) versus auto-HSCT with bone marrow (ABMT) in acute myeloid leukemia (AML) patients in first remission (CR). we observed that among patients alive and still in CR 5 years after planned auto-HSCT, approximately 10% of the patients died in the following 10 years. This stresses the need for long-term close surveillance of AML patients after auto-HSCT. further, long-term follow-up of the trial confirms that APBSCT was comparable to ABMT in term of disease-free-survival and overall survival

    Hematopoietic stem cells exhibit a specific ABC transporter gene expression profile clearly distinct from other stem cells

    Get PDF
    Contains fulltext : 88395.pdf (publisher's version ) (Open Access)BACKGROUND: ATP-binding cassette (ABC) transporters protect cells against unrelated (toxic) substances by pumping them across cell membranes. Earlier we showed that many ABC transporters are highly expressed in hematopoietic stem cells (HSCs) compared to more committed progenitor cells. The ABC transporter expression signature may guarantee lifelong protection of HSCs but may also preserve stem cell integrity by extrusion of agents that trigger their differentiation. Here we have studied whether non-hematopoietic stem cells (non-HSCs) exhibit a similar ABC transporter expression signature as HSCs. RESULTS: ABC transporter expression profiles were determined in non-hematopoietic stem cells (non-HSCs) from embryonic, neonatal and adult origin as well as in various mature blood cell types. Over 11,000 individual ABC transporter expression values were generated by Taqman Low Density Arrays (TLDA) to obtain a sensitivity comparable with quantitative real-time polymerase chain reactions. We found that the vast majority of transporters are significantly higher expressed in HSCs compared to non-HSCs. Furthermore, regardless their origin, non-HSCs exhibited strikingly similar ABC transporter expression profiles that were distinct from those in HSCs. Yet, sets of transporters characteristic for different stem cell types could be identified, suggesting restricted functions in stem cell physiology. Remarkably, in HSCs we could not pinpoint any single transporter expressed at an evidently elevated level when compared to all the mature blood cell types studied. CONCLUSIONS: These findings challenge the concept that individual ABC transporters are implicated in maintaining stem cell integrity. Instead, a distinct ABC transporter expression signature may be essential for stem cell function. The high expression of specific transporters in non-HSCs and mature blood cells suggests a specialized, cell type dependent function and warrants further functional experiments to determine their exact roles in cellular (patho)physiology

    A Polymorphism in the Splice Donor Site of ZNF419 Results in the Novel Renal Cell Carcinoma-Associated Minor Histocompatibility Antigen ZAPHIR

    Get PDF
    Nonmyeloablative allogeneic stem cell transplantation (SCT) can induce remission in patients with renal cell carcinoma (RCC), but this graft-versus-tumor (GVT) effect is often accompanied by graft-versus-host disease (GVHD). Here, we evaluated minor histocompatibility antigen (MiHA)-specific T cell responses in two patients with metastatic RCC who were treated with reduced-intensity conditioning SCT followed by donor lymphocyte infusion (DLI). One patient had stable disease and emergence of SMCY.A2-specific CD8+ T cells was observed after DLI with the potential of targeting SMCY-expressing RCC tumor cells. The second patient experienced partial regression of lung metastases from whom we isolated a MiHA-specific CTL clone with the capability of targeting RCC cell lines. Whole genome association scanning revealed that this CTL recognizes a novel HLA-B7-restricted MiHA, designated ZAPHIR, resulting from a polymorphism in the splice donor site of the ZNF419 gene. Tetramer analysis showed that emergence of ZAPHIR-specific CD8+ T cells in peripheral blood occurred in the absence of GVHD. Furthermore, the expression of ZAPHIR in solid tumor cell lines indicates the involvement of ZAPHIR-specific CD8+ T cell responses in selective GVT immunity. These findings illustrate that the ZNF419-encoded MiHA ZAPHIR is an attractive target for specific immunotherapy after allogeneic SCT

    Mutational spectrum and dynamics of clonal hematopoiesis in anemia of older individuals

    Get PDF
    Anemia is a major and currently poorly understood clinical manifestation of hematopoietic aging. Upon aging, hematopoietic clones harboring acquired leukemia-associated mutations expand and become detectable, now referred to as clonal hematopoiesis (CH). To investigate the relationship between CH and anemia of the elderly, we explored the landscape and dynamics of CH in older individuals with anemia. From the prospective, population-based Lifelines cohort (n = 167 729), we selected all individuals at least 60 years old who have anemia according to World Health Organization criteria (n = 676) and 1:1 matched control participants. Peripheral blood of 1298 individuals was analyzed for acquired mutations at a variant allele frequency (VAF) of 1% or higher in 27 driver genes. To track clonal evolution over time, we included all available follow-up samples (n = 943). CH was more frequently detected in individuals with anemia (46.6%) compared with control individuals (39.1%; P = .007). Although no differences were observed regarding commonly detected DTA mutations (DNMT3A, TET2, ASXL1) in individuals with anemia compared with control individuals, other mutations were enriched in the anemia cohort, including TP53 and SF3B1. Unlike individuals with nutrient deficiency (P = .84), individuals with anemia of chronic inflammation and unexplained anemia revealed a higher prevalence of CH (P = .035 and P = .017, respectively) compared with their matched control individuals. Follow-up analyses revealed that clones may expand and decline, generally showing only a subtle increase in VAF (mean, 0.56%) over the course of 44 months, irrespective of the presence of anemia. Specific mutations were associated with different growth rates and propensities to acquire an additional hit. In contrast to smaller clones (<5% VAF), which did not affect overall survival, larger clones were associated with increased risk for death

    The anemia-independent impact of myelodysplastic syndromes on health-related quality of life

    Get PDF
    Myelodysplastic syndromes (MDS) are in the majority of cases characterized by anemia. Both anemia and MDS per se may directly contribute to impairments in health-related quality of life (HRQoL). In this study, we aimed to investigate the anemia-independent impact of MDS on HRQoL. We evaluated participants (≥ 50 years) from the large population-based Lifelines cohort (N = 44,694, mean age 59.0 ± 7.4 years, 43.6% male) and the European MDS Registry (EUMDS) (N = 1538, mean age 73.4 ± 9.0 years, 63.0% male), which comprises a cohort of lower-risk MDS patients. To enable comparison concerning HRQoL, SF-36 scores measured in Lifelines were converted to EQ-5D-3L index (range 0-1) and dimension scores. Lower-risk MDS patients had significantly lower HRQoL than those from the Lifelines cohort, as illustrated in both the index score and in the five different dimensions. Multivariable linear regression analysis demonstrated that MDS had an adjusted total impact on the EQ-5D index score (B =  - 0.12, p < 0.001) and an anemia-independent "direct" impact (B =  - 0.10, p < 0.001). Multivariable logistic regression analysis revealed an anemia-independent impact of MDS in the dimension mobility, self-care, usual activities, and anxiety/depression (all except pain/discomfort). This study demonstrates that the major part of the negative impact of lower-risk MDS on HRQoL is not mediated via anemia. Thus, the therapeutic focus should include treatment strategies directed at underlying pathogenic mechanisms to improve HRQoL, rather than aiming predominantly at increasing hemoglobin levels
    corecore