123 research outputs found

    Genomics and current genetic understanding of Erwinia amylovora and the fire blight antagonist Pantoea vagans

    Get PDF
    Abstract The bacterial plant pathogen Erwinia amylovora causes fire blight, a major disease threat to pome fruit production worldwide with further impact on a wide-range of Rosaceae species. Important factors contributing to the development of the disease were discovered in the last decades. Comparative genomics of the genera Erwinia and Pantoea is coming into focus with the recent availability of complete genome sequences. Insights from comparative genomics now position us to answer fundamental questions regarding the evolution of E. amylovora as a successful pathogen and the critical elements for biocontrol activity of Pantoea spp. This trove of new data promises to reveal novel determinants and to understand interactive pathways for virulence, host range and ecological fitness. The ultimate aim is now to apply genomics and identify the pathogen Achilles heels and antagonist mechanisms of action as targets for designing innovative control strategies for fire blight

    Exploring bacterial communities in aquaponic systems

    Get PDF
    Aquaponics is a production system based on the dynamic equilibrium between fish, plants, and microorganisms. In order to better understand the role of microorganisms in this tripartite relationship, we studied the bacterial communities hosted in eight aquaponic and aquaculture systems. The bacterial communities were analyzed by 16S rRNA gene deep sequencing. At the phylum level, the bacterial communities from all systems were relatively similar with a predominance of Proteobacteria and Bacteroidetes. At the genus level, however, the communities present in the sampled systems were more heterogeneous. The biofilter samples harbored more diverse communities than the corresponding sump samples. The core microbiomes from the coupled and decoupled systems shared more common operational taxonomic units than with the aquaculture systems. Eventually, some of the taxa identified in the systems could have beneficial functions for plant growth and health, but a deeper analysis would be required to identify the precise functions involved in aquaponics

    High-quality draft genome sequence of Pseudomonas reidholzensis strain CCOS 865T

    Get PDF
    We have sequenced and assembled the genome of Pseudomonas reidholzensis CCOS 865T, which was isolated in 2014 from forest soil. Members of the genus Pseudomonas play important roles in environmental systems and are utilized in many biotechnological processes. The genome of this species may provide an important resource for the discovery of novel enzyme activities

    Comparative genomics of Prunus-associated members of the Pseudomonas syringae species complex reveals traits supporting co-evolution and host adaptation

    Get PDF
    Related publication: https://doi.org/10.1186/s12864-019-5555-yMembers of the Pseudomonas syringae species complex cause symptoms that are ranging from leaf spots to cankers on a multitude of plant species, including some of the genus Prunus. To date, a total of two species of the P. syringae species complex and six different pathovars have been associated with diseases on Prunus spp., which were shown to belong to different phylogenetic units (phylogroups, PG) based on sequence similarity of housekeeping genes or whole genomes, suggesting that virulence to Prunus spp. may be the result of convergent pathoadaptation. In this study, a comparative genomics approach was used to determine genes significantly associated with strains isolated from Prunus spp. across a phylogeny of 97 strains belonging to the P. syringae species complex. Our study revealed the presence of a set of orthologous proteins which were significantly associated with strains isolated from Prunus spp. than in strains isolated from other hosts or from non-agricultural environments. Among them, the type III effector HopAY predicted to encode for a C58 cysteine protease was found to be highly associated with strains isolated from Prunus spp. and revealed patterns supporting co-evolution and host adaptation

    Comparative genomics of Xanthomonas fragariae and Xanthomonas arboricola pv. fragariae reveals intra- and interspecies variations

    Get PDF
    The quarantine bacterium Xanthomonas fragariae causes angular leaf spots on strawberry. Its population structure was recently found to be divided into four (sub)groups resulting from two distinct main groups. Xanthomonas arboricola pv. fragariae causes bacterial leaf blight, but the bacterium has an unclear virulence status on strawberry. In this study, we use comparative genomics to provide an overview of the genomic variations of a set of 58 X. fragariae and five X. arboricola pv. fragariae genomes with a focus on virulence-related proteins. Structural differences within X. fragariae such as differential plasmid presence and large-scale genomic rearrangements were observed. On the other hand, the virulence-related protein repertoire was found to vary greatly at the interspecies level. In three out of five sequenced X. arboricola pv. fragariae strains, the major part of the Hrp type III secretion system was lacking. An inoculation test with strains from all four X. fragariae (sub)groups and X. arboricola pv. fragariae resulted in an interspecies difference in symptom induction since no symptoms were observed on the plants inoculated with X. arboricola pv. fragariae. Our analysis suggests that all X. fragariae (sub)groups are pathogenic on strawberry plants. On the other hand, the first genomic investigations of X. arboricola pv. fragariae revealed a potential lack of certain key virulence-related factors which may be related to the difficulties to reproduce symptoms on strawberry and could question the plant-host interaction of the pathovar

    Nitrogen transformations across compartments of an aquaponic system

    Get PDF
    The presence and transformations of nitrogen (N) in the environment depend on a variety of environmental factors but are also strongly influenced by anthropogenic activities such as modern agriculture. Understanding N transformations within the context of agricultural systems is crucial for efficient use thereof. The aim of this study was to investigate the changes in concentration of N forms (ammonium, nitrite, nitrate and organic N) within an aquaponic system, a modern agricultural system, in order to obtain insights into environmental pressures influencing N transformation processes. By measuring the concentrations of the individual N compounds, complemented by the determination of abiotic parameters and other relevant nutrients within the system water at 13 sampling points, significant differences between compartments that build up an aquaponic system could be demonstrated. These differences were attributed to individual microenvironments specific to the aerobic loop, anaerobic loop and radial flow settler as a connection between the two, shaping the microbial processes within the aquaponic system

    Complete genome sequence of the cyanogenic phosphate-solubilizing Pseudomonas sp. strain CCOS 191 : a close relative of Pseudomonas mosseli

    Get PDF
    We sequenced the complete genome of the isolate Pseudomonas sp. CCOS 191. This strain is able to dissolve phosphate minerals and form cyanide. The genome sequence is used to establish the phylogenetic relationship of this species

    Differentiation of the Xanthomonas hortorum – Xanthomonas hydrangeae species complex using sensitive and selective LAMP assays

    Get PDF
    Related publications: https://doi.org/10.1099/ijsem.0.005163, https://doi.org/10.1002/ndr2.12008The seven pathovars of Xanthomonas hortorum and Xanthomonas hydrangeae, referred to as the X. hortorum – X. hydrangeae species complex, cause disease on a multitude of plants, including crops, ornamental and wild plants. Cross-pathogenicity was proven for some of the strains within this species complex. It is thus important to have highly specific and fast diagnostics methods for members of the X. hortorum – X. hydrangeae species complex. A comparative genomic analysis was conducted for representative members within the complex to identify singletons for use as genomic targets for the assays. Seven loop-mediated isothermal amplification (LAMP) diagnostics assays were developed for the detection of six clades within the X. hortorum – X. hydrangeae species complex, in addition to one assay specific for the entire species complex. Primer sets were tested on a set of 62 reference strains. The primer sets amplified their respective targets within 15 minutes. Based on the reference set, all assays had a sensitivity, specificity, and efficiency of 100%. The assays were used on a validation set of 60 strains. According to the LAMP results, out of the 60 strains, 39 strains were assigned to one of the clades within the complex, 9 were assigned to the complex but to yet undefined clades within the complex, and 12 strains were previously misclassified as X. hortorum since their genomic DNA did not yield amplification with any of the assays. The seven genome-based assays are promising for use as diagnostic tools for various members within the X. hortorum – X. hydrangeae species complex, and for assigning new and historical isolates to this complex

    Broad diversity of bacteria degrading 17ß-estradiol-3-sulfate isolated from river sediment and biofilm at a wastewater treatment plant discharge

    Get PDF
    Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)Conjugated estrogens, such as 17β-estradiol-3-sulfate (E2-3S), can be released into aquatic environments through wastewater treatment plants (WWTP). There, they are microbiologically degraded into free estrogens, which can have harmful effects on aquatic wildlife. Here, the degradation of E2-3S in environmental samples taken upstream, downstream and at the effluent of a WWTP was assessed. Sediment and biofilm samples were enriched for E2-3S-degrading microorganisms, yielding a broad diversity of bacterial isolates, including known and novel degraders of estrogens. Since E2-3S-degrading bacteria were also isolated in the sample upstream of the WWTP, the WWTP does not influence the ability of the microbial community to degrade E2-3S

    Microbial diversity in different compartments of an aquaponics system

    Get PDF
    Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)Aquaponics is a solution for sustainable production of fish and plants in a single semi-closed system, where nutrient-rich water from the aquaculture provides nutrients for plant growth. We examined the microbial communities within an experimental aquaponics system. Whereas the fish feces contained a separate community dominated by bacteria of the genus Cetobacterium, the samples from plant roots, biofilter, and periphyton were more similar to each other, while the communities were more diverse. Detailed examination of the data gave the first indications to functional groups of organisms in the different compartments of the aquaponic system. As other nitrifiers other than members of the genus Nitrospira were only present at low numbers, it was anticipated that Nitrospirae may perform the nitrification process in the biofilm
    • …
    corecore