664 research outputs found

    Single and Composite Hot Subdwarf Stars in the Light of 2MASS Photometry

    Full text link
    Utilizing the Two Micron All Sky Survey (2MASS) Second Incremental Data Release Catalog, we have retrieved near-IR magnitudes for several hundred hot subdwarfs (sdO and sdB stars) drawn from the "Catalogue of Spectroscopically Identified Hot Subdwarfs" (Kilkenny, Heber, & Drilling 1988, 1992). This sample size greatly exceeds that of previous studies of hot subdwarfs. Examining 2MASS photometry alone or in combination with visual photometry (Johnson BV or Stromgren uvby) available in the literature, we show that it is possible to identify hot subdwarf stars that exhibit atypically red IR colors that can be attributed to the presence of an unresolved late type companion. Utilizing this large sample, we attempt for the first time to define an approximately volume limited sample of hot subdwarfs. We discuss the considerations, biases, and difficulties in defining such a sample. We find that, of the hot subdwarfs in Kilkenny et al., about 40% in a magnitude limited sample have colors that are consistent with the presence of an unresolved late type companion. Binary stars are over-represented in a magnitude limited sample. In an approximately volume limited sample the fraction of composite-color binaries is about 30%.Comment: to appear in Sept 2003 AJ, 41 pages total, 12 figures, 2 tables are truncated (full tables to appear in electronic journal or available by request

    Beyond the Local Volume. II. Population Scaleheights and Ages of Ultracool Dwarfs in Deep HST/WFC3 Parallel Fields

    Get PDF
    Ultracool dwarfs (UCDs) represent a significant proportion of stars in the Milky Way, and deep samples of these sources have the potential to constrain the formation history and evolution of low-mass objects in the Galaxy. Until recently, spectral samples have been limited to the local volume (d \u3c 100 pc). Here, we analyze a sample of 164 spectroscopically characterized UCDs identified by Aganze et al. in the Hubble Space Telescope (HST) WFC3 Infrared Spectroscopic Parallel Survey (WISPS) and 3D-HST. We model the observed luminosity function using population simulations to place constraints on scaleheights, vertical velocity dispersions, and population ages as a function of spectral type. Our star counts are consistent with a power-law mass function and constant star formation history for UCDs, with vertical scaleheights of 249 pc for late-M dwarfs, 153 pc for L dwarfs, and 175 pc for T dwarfs. Using spatial and velocity dispersion relations, these scaleheights correspond to disk population ages of 3.6 Gyr for late-M dwarfs, 2.1 Gyr for L dwarfs, and 2.4 Gyr for T dwarfs, which are consistent with prior simulations that predict that L-type dwarfs are on average a younger and less dispersed population. There is an additional 1–2 Gyr systematic uncertainty on these ages due to variances in age-velocity relations. We use our population simulations to predict the UCD yield in the James Webb Space Telescope PASSAGES survey, a similar and deeper survey to WISPS and 3D-HST, and find that it will produce a comparably sized UCD sample, albeit dominated by thick disk and halo sources

    Beyond the Local Volume. I. Surface Densities of Ultracool Dwarfs in Deep HST/WFC3 Parallel Fields

    Get PDF
    Ultracool dwarf stars and brown dwarfs provide a unique probe of large-scale Galactic structure and evolution; however, until recently spectroscopic samples of sufficient size, depth, and fidelity have been unavailable. Here, we present the identification of 164 M7-T9 ultracool dwarfs in 0.6 deg2 of deep, low-resolution, near-infrared spectroscopic data obtained with the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) instrument as part of the WFC3 Infrared Spectroscopic Parallel Survey and the 3D-HST survey. We describe the methodology by which we isolate ultracool dwarf candidates from over 200,000 spectra, and show that selection by machine-learning classification is superior to spectral index-based methods in terms of completeness and contamination. We use the spectra to accurately determine classifications and spectrophotometric distances, the latter reaching to ∼2 kpc for L dwarfs and ∼400 pc for T dwarfs

    Beyond the Local Volume II: Population Scaleheights and Ages of Ultracool Dwarfs in Deep HST/WFC3 Parallel Fields

    Get PDF
    Ultracool dwarfs represent a significant proportion of stars in the Milky Way,and deep samples of these sources have the potential to constrain the formation history and evolution of low-mass objects in the Galaxy. Until recently, spectral samples have been limited to the local volume (d<100 pc). Here, we analyze a sample of 164 spectroscopically-characterized ultracool dwarfs identified by Aganze et al. (2022) in the Hubble Space Telescope WFC3 Infrared Spectroscopic Parallel (WISP) Survey and 3D-HST. We model the observed luminosity function using population simulations to place constraints on scaleheights, vertical velocity dispersions and population ages as a function of spectral type. Our star counts are consistent with a power-law mass function and constant star formation history for ultracool dwarfs, with vertical scaleheights 24961+48_{-61}^{+48} pc for late M dwarfs, 15330+56_{-30}^{+56} pc for L dwarfs, and 17556+149_{-56}^{+149} pc for T dwarfs. Using spatial and velocity dispersion relations, these scaleheights correspond to disk population ages of 3.61.0+0.8_{-1.0}^{+0.8} for late M dwarfs, 2.10.5+0.9_{-0.5}^{+0.9} Gyr for L dwarfs, and 2.40.8+2.4_{-0.8}^{+2.4} Gyr for T dwarfs, which are consistent with prior simulations that predict that L-type dwarfs are on average a younger and less dispersed population. There is an additional 1-2 Gyr systematic uncertainty on these ages due to variances in age-velocity relations. We use our population simulations to predict the UCD yield in the JWST PASSAGES survey, a similar and deeper survey to WISPS and 3D-HST, and find that it will produce a comparably-sized UCD sample, albeit dominated by thick disk and halo sources.Comment: submitted to Ap

    Hydrogen-poor superluminous stellar explosions

    Full text link
    Supernovae (SNe) are stellar explosions driven by gravitational or thermonuclear energy, observed as electromagnetic radiation emitted over weeks or more. In all known SNe, this radiation comes from internal energy deposited in the outflowing ejecta by either radioactive decay of freshly-synthesized elements (typically 56Ni), stored heat deposited by the explosion shock in the envelope of a supergiant star, or interaction between the SN debris and slowly-moving, hydrogen-rich circumstellar material. Here we report on a new class of luminous SNe whose observed properties cannot be explained by any of these known processes. These include four new SNe we have discovered, and two previously unexplained events (SN 2005ap; SCP 06F6) that we can now identify as members. These SNe are all ~10 times brighter than SNe Ia, do not show any trace of hydrogen, emit significant ultra-violet (UV) flux for extended periods of time, and have late-time decay rates which are inconsistent with radioactivity. Our data require that the observed radiation is emitted by hydrogen-free material distributed over a large radius (~10^15 cm) and expanding at high velocities (>10^4 km s^-1). These long-lived, UV-luminous events can be observed out to redshifts z>4 and offer an excellent opportunity to study star formation in, and the interstellar medium of, primitive distant galaxies.Comment: Accepted to Nature. Press embargoed until 2011 June 8, 18:00 U

    Fluctuations of elastic interfaces in fluids: Theory and simulation

    Full text link
    We study the dynamics of elastic interfaces-membranes-immersed in thermally excited fluids. The work contains three components: the development of a numerical method, a purely theoretical approach, and numerical simulation. In developing a numerical method, we first discuss the dynamical coupling between the interface and the surrounding fluids. An argument is then presented that generalizes the single-relaxation time lattice-Boltzmann method for the simulation of hydrodynamic interfaces to include the elastic properties of the boundary. The implementation of the new method is outlined and it is tested by simulating the static behavior of spherical bubbles and the dynamics of bending waves. By means of the fluctuation-dissipation theorem we recover analytically the equilibrium frequency power spectrum of thermally fluctuating membranes and the correlation function of the excitations. Also, the non-equilibrium scaling properties of the membrane roughening are deduced, leading us to formulate a scaling law describing the interface growth, W^2(L,T)=L^3 g[t/L^(5/2)], where W, L and T are the width of the interface, the linear size of the system and the temperature respectively, and g is a scaling function. Finally, the phenomenology of thermally fluctuating membranes is simulated and the frequency power spectrum is recovered, confirming the decay of the correlation function of the fluctuations. As a further numerical study of fluctuating elastic interfaces, the non-equilibrium regime is reproduced by initializing the system as an interface immersed in thermally pre-excited fluids.Comment: 15 pages, 11 figure

    Multiplicity Structure of the Hadronic Final State in Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    The multiplicity structure of the hadronic system X produced in deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant mass M_X of the system X. Results are presented on multiplicity distributions and multiplicity moments, rapidity spectra and forward-backward correlations in the centre-of-mass system of X. The data are compared to results in e+e- annihilation, fixed-target lepton-nucleon collisions, hadro-produced diffractive final states and to non-diffractive hadron-hadron collisions. The comparison suggests a production mechanism of virtual photon dissociation which involves a mixture of partonic states and a significant gluon content. The data are well described by a model, based on a QCD-Regge analysis of the diffractive structure function, which assumes a large hard gluonic component of the colourless exchange at low Q^2. A model with soft colour interactions is also successful.Comment: 22 pages, 4 figures, submitted to Eur. Phys. J., error in first submission - omitted bibliograph

    Differential (2+1) Jet Event Rates and Determination of alpha_s in Deep Inelastic Scattering at HERA

    Full text link
    Events with a (2+1) jet topology in deep-inelastic scattering at HERA are studied in the kinematic range 200 < Q^2< 10,000 GeV^2. The rate of (2+1) jet events has been determined with the modified JADE jet algorithm as a function of the jet resolution parameter and is compared with the predictions of Monte Carlo models. In addition, the event rate is corrected for both hadronization and detector effects and is compared with next-to-leading order QCD calculations. A value of the strong coupling constant of alpha_s(M_Z^2)= 0.118+- 0.002 (stat.)^(+0.007)_(-0.008) (syst.)^(+0.007)_(-0.006) (theory) is extracted. The systematic error includes uncertainties in the calorimeter energy calibration, in the description of the data by current Monte Carlo models, and in the knowledge of the parton densities. The theoretical error is dominated by the renormalization scale ambiguity.Comment: 25 pages, 6 figures, 3 tables, submitted to Eur. Phys.

    Multi-Jet Event Rates in Deep Inelastic Scattering and Determination of the Strong Coupling Constant

    Get PDF
    Jet event rates in deep inelastic ep scattering at HERA are investigated applying the modified JADE jet algorithm. The analysis uses data taken with the H1 detector in 1994 and 1995. The data are corrected for detector and hadronization effects and then compared with perturbative QCD predictions using next-to-leading order calculations. The strong coupling constant alpha_S(M_Z^2) is determined evaluating the jet event rates. Values of alpha_S(Q^2) are extracted in four different bins of the negative squared momentum transfer~\qq in the range from 40 GeV2 to 4000 GeV2. A combined fit of the renormalization group equation to these several alpha_S(Q^2) values results in alpha_S(M_Z^2) = 0.117+-0.003(stat)+0.009-0.013(syst)+0.006(jet algorithm).Comment: 17 pages, 4 figures, 3 tables, this version to appear in Eur. Phys. J.; it replaces first posted hep-ex/9807019 which had incorrect figure 4
    corecore