1,130 research outputs found

    Instantons in the Double-Tensor Multiplet

    Get PDF
    The double-tensor multiplet naturally appears in type IIB superstring compactifications on Calabi-Yau threefolds, and is dual to the universal hypermultiplet. We revisit the calculation of instanton corrections to the low-energy effective action, in the supergravity approximation. We derive a Bogomolny'i bound for the double-tensor multiplet and find new instanton solutions saturating the bound. They are characterized by the topological charges and the asymptotic values of the scalar fields in the double-tensor multiplet.Comment: 17 pages, LaTeX2e with amsmath.sty; v2: minor change

    Influence of retardation effects on 2D magnetoplasmon spectrum

    Full text link
    Within dissipationless limit the magnetic field dependence of magnetoplasmon spectrum for unbounded 2DEG system found to intersect the cyclotron resonance line, and, then approaches the frequency given by light dispersion relation. Recent experiments done for macroscopic disc-shape 2DEG systems confirm theory expectations.Comment: 2 pages,2 figure

    Membrane Instantons and de Sitter Vacua

    Full text link
    We investigate membrane instanton effects in type IIA strings compactified on rigid Calabi-Yau manifolds. These effects contribute to the low-energy effective action of the universal hypermultiplet. In the absence of additional fivebrane instantons, the quaternionic geometry of this hypermultiplet is determined by solutions of the three-dimensional Toda equation. We construct solutions describing membrane instantons, and find perfect agreement with the string theory prediction. In the context of flux compactifications we discuss how membrane instantons contribute to the scalar potential and the stabilization of moduli. Finally, we demonstrate the existence of meta-stable de Sitter vacua.Comment: v3: minor clarifications, JHEP version, 38 page

    Towards Subject-Specific Therapy Planning for Non-Invasive Blood Brain Barrier Opening in Mice by Focused Ultrasound

    Get PDF
    Focused ultrasound (FUS) is a promising method to open the blood brain barrier (BBB) for treatment of neurodegenerative diseases. Accurate targeting is essential for a successful BBB opening (BBBo). We aim to develop a robust therapy planning for BBBo in mice, which is challenging due to the size of the brain and the influence of the skull on the ultrasound pressure distribution. For enabling mouse individual therapy planning, a simulation tool is proposed, developed and validated. We used the k-Wave toolbox to enable 3D acoustic simulations of the commercial FUS system from Image Guided Therapy (IGT). Micro-CT scans were used to model the geometry of skulls. Simulations using a mouse skull showed an attenuation of approx. 20–24% depending on the position of penetration, which was validated by hydrophone measurements in the same range. Based on these validations we planned BBBo in m ice by placing the transducer at different positions over the mouse brain and varying the excitation amplitude. With different transducer positions, the peak pressure in the brain varied between 0.54 MPa and 0.62 MPa at 11% output level, which is expected to enable safe BBBo. Subsequently, in vivo experiments were conducted using the aforementioned simulation parameters. BBBo was confirmed by contrast enhanced T1 weighted magnetic resonance images immediately after sonication

    On paraquaternionic submersions between paraquaternionic K\"ahler manifolds

    Full text link
    In this paper we deal with some properties of a class of semi-Riemannian submersions between manifolds endowed with paraquaternionic structures, proving a result of non-existence of paraquaternionic submersions between paraquaternionic K\"ahler non locally hyper paraK\"ahler manifolds. Then we examine, as an example, the canonical projection of the tangent bundle, endowed with the Sasaki metric, of an almost paraquaternionic Hermitian manifold.Comment: 13 pages, no figure

    Special Geometry of Euclidean Supersymmetry III: the local r-map, instantons and black holes

    Full text link
    We define and study projective special para-Kahler manifolds and show that they appear as target manifolds when reducing five-dimensional vector multiplets coupled to supergravity with respect to time. The dimensional reductions with respect to time and space are carried out in a uniform way using an epsilon-complex notation. We explain the relation of our formalism to other formalisms of special geometry used in the literature. In the second part of the paper we investigate instanton solutions and their dimensional lifting to black holes. We show that the instanton action, which can be defined after dualising axions into tensor fields, agrees with the ADM mass of the corresponding black hole. The relation between actions via Wick rotation, Hodge dualisation and analytic continuation of axions is discussed.Comment: 72 pages, 2 figure

    Strength Training for Adolescents with cerebral palsy (STAR): study protocol of a randomised controlled trial to determine the feasibility, acceptability and efficacy of resistance training for adolescents with cerebral palsy

    Get PDF
    Introduction: Gait is inefficient in children with cerebral palsy, particularly as they transition to adolescence. Gait inefficiency may be associated with declines in gross motor function and participation among adolescents with cerebral palsy. Resistance training may improve gait efficiency through a number of biomechanical and neural mechanisms. The aim of the Strength Training for Adolescents with cerebral palsy (STAR) trial is to evaluate the effect of resistance training on gait efficiency, activity and participation in adolescents with cerebral palsy. We also aim to determine the biomechanical and neural adaptations that occur following resistance training and evaluate the feasibility and acceptability of such an intervention for adolescents with cerebral palsy. Methods and analysis: 60 adolescents (Gross Motor Function Classification System level I–III) will be randomised to a 10-week resistance training group or a usual care control group according to a computer generated random schedule. The primary outcome is gait efficiency. Secondary outcomes are habitual physical activity, participation, muscle–tendon mechanics and gross motor function. General linear models will be used to evaluate differences in continuous data between the resistance training and usual care groups at 10 and 22 weeks, respectively. A process evaluation will be conducted alongside the intervention. Fidelity of the resistance training programme to trial protocol will be quantified by observations of exercise sessions. Semi structured interviews will be conducted with participants and physiotherapists following the resistance training programme to determine feasibility and acceptability of the programme. Ethics and dissemination: This trial has ethical approval from Brunel University London’s Department of Clinical Sciences’ Research Ethics Committee and the National Research Ethics Service (NRES) Committee London—Surrey Borders. The results of the trial will be submitted for publication in academic journals, presented at conferences and distributed to adolescents, families and healthcare professionals through the media with the assistance of the STAR advisory group

    Radial orbit instability: review and perspectives

    Full text link
    This paper presents elements about the radial orbit instability, which occurs in spherical self-gravitating systems with a strong anisotropy in the radial velocity direction. It contains an overview on the history of radial orbit instability. We also present the symplectic method we use to explore stability of equilibrium states, directly related to the dissipation induced instability mechanism well known in theoretical mechanics and plasma physics.Comment: 10 pages, submitted to Transport Theory and Statistical Physics, proceedings of Vlasovia 2009 International Conference. Corrected for typos, redaction, and references adde
    • …
    corecore