35 research outputs found

    Synthesis of Cyclo, Ring Expanded, and Backbone Extended Nucleosides

    Get PDF
    Thesis advisor: Larry W. McLaughlinNucleic acids are responsible for maintaining the biological information responsible for the activities of all known living organisms. Research of nucleic acids provides opportunities to help understand, prevent, and cure disease in addition to allowing us to gain a greater appreciation for the wonders of nature. This work presents the synthesis and properties of several modified nucleosides. Chapter 2 presents an improved synthesis of R and S 6,5'-cyclouridine, which are rigidified nucleosides locked in the anti conformation. This work helps to understand the properties of these interesting molecules and will allow scientists to synthesize large quantities of these monomers for future research. Chapter 3 presents the synthesis of novel 6,6'-(S)-cyclo-2'-deoxyuridine. This work is highlighted by a zinc mediated cyclization to form a seven-membered ring; the first published reaction of its kind. The compound itself is a mimic of thymidine that also has the base locked in the anti position. Lastly, Chapter 4 presents work on 6' extended backbone nucleosides. These molecules have the potential to form a new type of helical structure and will help us to gain a greater understanding of the properties and dynamics that contribute to duplex stability in DNA.Thesis (PhD) — Boston College, 2012.Submitted to: Boston College. Graduate School of Arts and Sciences.Discipline: Chemistry

    Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions

    Get PDF
    Methods for site-specific modification of proteins should be quantitative and versatile with respect to the nature and size of the biological or chemical targets involved. They should require minimal modification of the target, and the underlying reactions should be completed in a reasonable amount of time under physiological conditions. Sortase-mediated transpeptidation reactions meet these criteria and are compatible with other labeling methods. Here we describe the expression and purification conditions for two sortase A enzymes that have different recognition sequences. We also provide a protocol that allows the functionalization of any given protein at its C terminus, or, for select proteins, at an internal site. The target protein is engineered with a sortase-recognition motif (LPXTG) at the place where modification is desired. Upon recognition, sortase cleaves the protein between the threonine and glycine residues, facilitating the attachment of an exogenously added oligoglycine peptide modified with the functional group of choice (e.g., fluorophore, biotin, protein or lipid). Expression and purification of sortase takes ∼3 d, and sortase-mediated reactions take only a few minutes, but reaction times can be extended to increase yields.National Institutes of Health (U.S.) (Grant RO1 AI08787

    Site-Specific Chemoenzymatic Labeling of Aerolysin Enables the Identification of New Aerolysin Receptors

    Get PDF
    Aerolysin is a secreted bacterial toxin that perforates the plasma membrane of a target cell with lethal consequences. Previously explored native and epitope-tagged forms of the toxin do not allow site-specific modification of the mature toxin with a probe of choice. We explore sortase-mediated transpeptidation reactions (sortagging) to install fluorophores and biotin at three distinct sites in aerolysin, without impairing binding of the toxin to the cell membrane and with minimal impact on toxicity. Using a version of aerolysin labeled with different fluorophores at two distinct sites we followed the fate of the C-terminal peptide independently from the N-terminal part of the toxin, and show its loss in the course of intoxication. Making use of the biotinylated version of aerolysin, we identify mesothelin, urokinase plasminogen activator surface receptor (uPAR, CD87), glypican-1, and CD59 glycoprotein as aerolysin receptors, all predicted or known to be modified with a glycosylphosphatidylinositol anchor. The sortase-mediated reactions reported here can be readily extended to other pore forming proteins.National Institutes of Health (U.S.) (grant R01 AI087879

    Site-specific protein modification using immobilized sortase in batch and continuous-flow systems

    Get PDF
    Transpeptidation catalyzed by ​sortase A allows the preparation of proteins that are site-specifically and homogeneously modified with a wide variety of functional groups, such as fluorophores, PEG moieties, lipids, glycans, bio-orthogonal reactive groups and affinity handles. This protocol describes immobilization of ​sortase A on a solid support (Sepharose beads). Immobilization of ​sortase A simplifies downstream purification of a protein of interest after labeling of its N or C terminus. Smaller batch and larger-scale continuous-flow reactions require only a limited amount of enzyme. The immobilized enzyme can be reused for multiple cycles of protein modification reactions. The described protocol also works with a Ca²⁺-independent variant of ​sortase A with increased catalytic activity. This heptamutant variant of ​sortase A (7M) was generated by combining previously published mutations, and this immobilized enzyme can be used for the modification of calcium-senstive substrates or in instances in which low temperatures are needed. Preparation of immobilized ​sortase A takes 1–2 d. Batch reactions take 3–12 h and flow reactions proceed at 0.5 ml h⁻¹, depending on the geometry of the reactor used.United States. National Institutes of Health (RO1 AI087879

    Monovalent engagement of the BCR activates ovalbumin-specific transnuclear B cells

    Get PDF
    Valency requirements for B cell activation upon antigen encounter are poorly understood. OB1 transnuclear B cells express an IgG1 B cell receptor (BCR) specific for ovalbumin (OVA), the epitope of which can be mimicked using short synthetic peptides to allow antigen-specific engagement of the BCR. By altering length and valency of epitope-bearing synthetic peptides, we examined the properties of ligands required for optimal OB1 B cell activation. Monovalent engagement of the BCR with an epitope-bearing 17-mer synthetic peptide readily activated OB1 B cells. Dimers of the minimal peptide epitope oriented in an N to N configuration were more stimulatory than their C to C counterparts. Although shorter length correlated with less activation, a monomeric 8-mer peptide epitope behaved as a weak agonist that blocked responses to cell-bound peptide antigen, a blockade which could not be reversed by CD40 ligation. The 8-mer not only delivered a suboptimal signal, which blocked subsequent responses to OVA, anti-IgG, and anti-kappa, but also competed for binding with OVA. Our results show that fine-tuning of BCR-ligand recognition can lead to B cell nonresponsiveness, activation, or inhibition

    Turnip yellow mosaic virus protease binds ubiquitin suboptimally to fine-tune its deubiquitinase activity

    No full text
    International audienceSingle-stranded, positive-sense RNA viruses assemble their replication complexes in infected cells from a multi-domain replication polyprotein. This polyprotein usually contains at least one protease whose primary function is to process the polyprotein into mature proteins. Such proteases also may have other functions in the replication cycle. For instance, cysteine proteases (PRO) frequently double up as ubiquitin hydrolases (DUB), thus interfering with cellular processes critical for virus replication. We previously reported the crystal structures of such a PRO/DUB from Turnip yellow mosaic virus (TYMV) and of its complex with one of its PRO substrates. Here we report the crystal structure of TYMV PRO/DUB in complex with ubiquitin. We find that PRO/DUB recognizes ubiquitin in an unorthodox way: It interacts with the body of ubiquitin through a split recognition motif engaging both the major and the secondary recognition patches of ubiquitin (Ile44 patch and Ile36 patch, respectively, including Leu8 which is part of the two patches). However, the contacts are suboptimal on both sides. Introducing a single point mutation in TYMV PRO/DUB aimed at improving Ub-binding led to a much more active DUB. Comparison with other PRO/DUBs from other viral families, particularly coronaviruses, suggests that low DUB activities of viral PRO/DUBs may generally be fine-tuned features of interaction with host factors

    Production of unnaturally linked chimeric proteins using a combination of sortase-catalyzed transpeptidation and click chemistry

    No full text
    Chimeric proteins, including bispecific antibodies, are biological tools with therapeutic applications. Genetic fusion and ligation methods allow the creation of N-to-C and C-to-N fused recombinant proteins, but not unnaturally linked N-to-N and C-to-C fusion proteins. This protocol describes a simple procedure for the production of such chimeric proteins, starting from correctly folded proteins and readily available peptides. By equipping the N terminus or C terminus of the proteins of interest with a set of click handles using sortase A, followed by a strain-promoted click reaction, unnatural N-to-N and C-to-C linked (hetero) fusion proteins are established. Examples of proteins that have been conjugated via this method include interleukin-2, interferon-alpha, ubiquitin, antibodies and several single-domain antibodies. If the peptides, sortase A and the proteins of interest are in hand, the unnaturally N-to-N and C-to-C fused proteins can be obtained in 3-4 d

    Rapid Capture and Labeling of Cells on Single Domain Antibodies-Functionalized Flow Cell

    No full text
    Current techniques to characterize leukocyte subgroups in blood require long sample preparation times and sizable sample volumes. A simplified method for leukocyte characterization using smaller blood volumes would thus be useful in diagnostic settings. Here we describe a flow system comprised of two functionalized graphene oxide (GO) surfaces that allow the capture of distinct leukocyte populations from small volumes blood using camelid single-domain antibodyfragments (VHHs) as capture agents. We used site-specifically labeled leukocytes to detect and identify cells exposed to fungal challenge. Combining the chemical and optical properties of GO with the versatility of the VHH scaffold in the context of a flow system provides a quick and efficient method for the capture and characterization of functional leukocytes. Keywords: Single domain antibody, Graphene oxide, Sortase, Enzymatic labeling, Cell detection, LeukocytesNational Institutes of Health (U.S.) (NIH Grant no. 4DP1GM106409)National Institutes of Health (U.S.) (NIH Grant no. R01AI87879)Taiwan. Ministry of Science and Technology (MOST 105-2633-B-009-003)Taiwan. Ministry of Science and Technology (MOST 105-2628-B-009-001-MY3)National Chiao Tung University (Taiwan) (105W970

    Pyrovanadolysis, a Pyrophosphorolysis-like Reaction Mediated by Pyrovanadate, Mn2+, and DNA Polymerase of Bacteriophage T7

    Get PDF
    DNA polymerases catalyze the 3'–5'-pyrophosphorolysis of a DNA primer annealed to a DNA template in the presence of pyrophosphate (PPi). In this reversal of the polymerization reaction, deoxynucleotides in DNA are converted to deoxynucleoside 5'-triphosphates. Based on the charge, size, and geometry of the oxygen connecting the two phosphorus atoms of PPi, a variety of compounds was examined for their ability to carry out a reaction similar to pyrophosphorolysis. We describe a manganese-mediated pyrophosphorolysis-like activity using pyrovanadate (VV) catalyzed by the DNA polymerase of bacteriophage T7. We designate this reaction pyrovanadolysis. X-ray absorption spectroscopy reveals a shorter Mn-V distance of the polymerase-VV complex than the Mn-P distance of the polymerase-PPi complex. This structural arrangement at the active site accounts for the enzymatic activation by Mn-VV. We propose that the Mn2+, larger than Mg2+, fits the polymerase active site to mediate binding of VV into the active site of the polymerase. Our results may be the first documentation that vanadium can substitute for phosphorus in biological processes.

    Engineered red blood cells as carriers for systemic delivery of a wide array of functional probes

    No full text
    We developed modified RBCs to serve as carriers for systemic delivery of a wide array of payloads. These RBCs contain modified proteins on their plasma membrane, which can be labeled in a sortase-catalyzed reaction under native conditions without inflicting damage to the target membrane or cell. Sortase accommodates a wide range of natural and synthetic payloads that allow modification of RBCs with substituents that cannot be encoded genetically. As proof of principle, we demonstrate site-specific conjugation of biotin to in vitro-differentiated mouse erythroblasts as well as to mature mouse RBCs. Thus modified, RBCs remain in the bloodstream for up to 28 d. A single domain antibody attached enzymatically to RBCs enables them to bind specifically to target cells that express the antibody target. We extend these experiments to human RBCs and demonstrate efficient sortase-mediated labeling of in vitro-differentiated human reticulocytes.United States. Defense Advanced Research Projects Agency (Contract HR0011-12-2-0015
    corecore