20 research outputs found

    Microscopic Dynamics of Hard Ellipsoids in their Liquid and Glassy Phase

    Full text link
    To investigate the influence of orientational degrees of freedom onto the dynamics of molecular systems in its supercooled and glassy regime we have solved numerically the mode-coupling equations for hard ellipsoids of revolution. For a wide range of volume fractions ϕ\phi and aspect ratios x0x_{0} we find an orientational peak in the center of mass spectra χ000′′(q,ω)\chi_{000}^{''}(q,\omega) and ϕ000′′(q,ω)\phi_{000}^{''} (q,\omega) about one decade below a high frequency peak. This orientational peak is the counterpart of a peak appearing in the quadrupolar spectra χ22m′′(q,ω)\chi_{22m}^{''}(q,\omega) and ϕ22m′′(q,ω)\phi_{22m}^{''}(q,\omega). The latter peak is almost insensitive on ϕ\phi for x0x_{0} close to one, i.e. for weak steric hindrance, and broadens strongly with increasing x0x_{0}. Deep in the glass we find an additional peak between the orientational and the high frequency peak. We have evidence that this intermediate peak is the result of a coupling between modes with l=0l=0 and l=2l=2, due to the nondiagonality of the static correlators.Comment: 6 figures, 12 page

    Dynamical precursor of nematic order in a dense fluid of hard ellipsoids of revolution

    Full text link
    We investigate hard ellipsoids of revolution in a parameter regime where no long range nematic order is present but already finite size domains are formed which show orientational order. Domain formation leads to a substantial slowing down of a collective rotational mode which separates well from the usual microscopic frequency regime. A dynamic coupling of this particular mode into all other modes provides a general mechanism which explains an excess peak in spectra of molecular fluids. Using molecular dynamics simulation on up to 4096 particles and on solving the molecular mode coupling equation we investigate dynamic properties of the peak and prove its orientational origin.Comment: RevTeX4 style, 7 figure

    Structural relaxation in a system of dumbbell molecules

    Full text link
    The interaction-site-density-fluctuation correlators, the dipole-relaxation functions, and the mean-squared displacements of a system of symmetric dumbbells of fused hard spheres are calculated for two representative elongations of the molecules within the mode-coupling theory for the evolution of glassy dynamics. For large elongations, universal relaxation laws for states near the glass transition are valid for parameters and time intervals similar to the ones found for the hard-sphere system. Rotation-translation coupling leads to an enlarged crossover interval for the mean-squared displacement of the constituent atoms between the end of the von Schweidler regime and the beginning of the diffusion process. For small elongations, the superposition principle for the reorientational α\alpha-process is violated for parameters and time intervals of interest for data analysis, and there is a strong breaking of the coupling of the α\alpha-relaxation scale for the diffusion process with that for representative density fluctuations and for dipole reorientations.Comment: 15 pages, 14 figures, Phys. Rev. E in pres

    Slow dynamics about the glass transition as explored by muon spin relaxation spectroscopy

    Get PDF
    3 págs.; 2 figs. ; PACS number (s): 63.50.1x, 61.43.FsThe glass transition of a molecular glass former is monitored by means of measurements of the spin relaxation rates of implanted muons. The data measured under transverse fields upon heating the material from the glass phase are consistent with the onset of ergodicity-restoring motions some 22 K above the calorimetric glass transition. The results show that the technique can be fruitfully exploited to assess the presence of criticality within the supercooled liquid at microsecond scales. ©2003 American Physical SocietyWe acknowledge support from DGICYT (Spain) Grant No. PB98-C02-01.Peer Reviewe
    corecore