166 research outputs found

    Physical Nucleon Properties from Lattice QCD

    Get PDF
    We demonstrate that the extremely accurate lattice QCD data for the mass of the nucleon recently obtained by CP-PACS, combined with modern chiral extrapolation techniques, leads to a value for the mass of the physical nucleon which has a systematic error of less than one percent.Comment: 4 pages, 2 figure

    Strange nucleon form factors in the perturbative chiral quark model

    Get PDF
    We apply the perturbative chiral quark model at one loop to calculate the strange form factors of the nucleon. A detailed numerical analysis of the strange magnetic moments and radii of the nucleon, and also the momentum dependence of the form factors is presented.Comment: 18 pages, 6 figure

    Drop Traffic in Microfluidic Ladder Networks with Fore-Aft Structural Asymmetry

    Full text link
    We investigate the dynamics of pairs of drops in microfluidic ladder networks with slanted bypasses, which break the fore-aft structural symmetry. Our analytical results indicate that unlike symmetric ladder networks, structural asymmetry introduced by a single slanted bypass can be used to modulate the relative drop spacing, enabling them to contract, synchronize, expand, or even flip at the ladder exit. Our experiments confirm all these behaviors predicted by theory. Numerical analysis further shows that while ladder networks containing several identical bypasses are limited to nearly linear transformation of input delay between drops, mixed combination of bypasses can cause significant non-linear transformation enabling coding and decoding of input delays.Comment: 4 pages, 5 figure

    Axial Vector Coupling Constant in Chiral Colour Dielectric Model

    Full text link
    The axial vector coupling constants of the β\beta decay processes of neutron and hyperon are calculated in SU(3) chiral colour dielectric model (CCDM). Using these axial coupling constants of neutron and hyperon, in CCDM we calculate the integrals of the spin dependent structure functions for proton and neutron. Our result is similar to the results obtained by MIT bag and Cloudy bag models.Comment: 9 pages, Latex file, no figure, to appear in Phys. Rev.

    Octet magnetic moments and the Coleman-Glashow sum rule violation in the chiral quark model

    Full text link
    Baryon octet magnetic moments when calculated within the chiral quark model, incorporating the orbital angular momentum as well as the quark sea contribution through the Cheng-Li mechanism, not only show improvement over the non relativistic quark model results but also gives a non zero value for the right hand side of Coleman-Glashow sum rule. When effects due to spin-spin forces between constituent quarks as well as `mass adjustments' due to confinement are added, it leads to an excellent fit for the case of p, \Sigma^+, \Xi^o and violation of Coleman-Glashow sum rule, whereas in almost all the other cases the results are within 5% of the data.Comment: 5 RevTeX pages, accepted for publication in PRD(Rapid Communication

    Baryon masses from lattice QCD: Beyond the perturbative chiral regime

    Get PDF
    Consideration of the analytic properties of pion-induced baryon self-energies leads to new functional forms for the extrapolation of light baryon masses. These functional forms reproduce the leading non-analytic behavior of chiral perturbation theory, the correct non-analytic behavior at the NπN \pi threshold and the appropriate heavy-quark limit. They involve only three unknown parameters, which may be obtained by fitting to lattice data. Recent dynamical fermion results from CP-PACS and UKQCD are extrapolated using these new functional forms. We also use these functions to probe the limit of applicability of chiral perturbation theory to the extrapolation of lattice QCD results.Derek B. Leinweber, Anthony W. Thomas, Kazuo Tsushima, and Stewart V. Wrigh

    A Gauge Invariant Unitary Theory for Pion Photoproduction

    Get PDF
    A covariant, unitary and gauge invariant theory for pion photoproduction on a single nucleon is presented. To achieve gauge invariance at the operator level one needs to include both the πN\pi N and γπN\gamma\pi N thresholds. The final amplitude can be written in terms of a distorted wave in the final πN\pi N channel provided one includes additional diagrams to the standard Born term in which the photon is coupled to the final state pion and nucleon. These additional diagrams are required in order to satisfy gauge invariance.Comment: 4 pages, LaTeX, 1 figure as a separate uuencoded compressed tar fil

    Proportionate vs disproportionate distribution of wealth of two individuals in a tempered Paretian ensemble

    Get PDF
    We study the distribution P(\omega) of the random variable \omega = x_1/(x_1 + x_2), where x_1 and x_2 are the wealths of two individuals selected at random from the same tempered Paretian ensemble characterized by the distribution \Psi(x) \sim \phi(x)/x^{1 + \alpha}, where \alpha > 0 is the Pareto index and ϕ(x)\phi(x) is the cut-off function. We consider two forms of \phi(x): a bounded function \phi(x) = 1 for L \leq x \leq H, and zero otherwise, and a smooth exponential function \phi(x) = \exp(-L/x - x/H). In both cases \Psi(x) has moments of arbitrary order. We show that, for \alpha > 1, P(\omega) always has a unimodal form and is peaked at \omega = 1/2, so that most probably x_1 \approx x_2. For 0 < \alpha < 1 we observe a more complicated behavior which depends on the value of \delta = L/H. In particular, for \delta < \delta_c - a certain threshold value - P(\omega) has a three-modal (for a bounded \phi(x)) and a bimodal M-shape (for an exponential \phi(x)) form which signifies that in such ensembles the wealths x_1 and x_2 are disproportionately different.Comment: 9 pages, 8 figures, to appear in Physica
    corecore