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We investigate various resummations of the chiral expansion and fit to the extremely accurate lattice
QCD data for the mass of the nucleon recently obtained by the CP-PACS group. Using a variety of
finite-range regulators, we demonstrate a remarkably robust chiral extrapolation of the nucleon mass.
The systematic error associated with the chiral extrapolation alone is estimated to be less than 1%.
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implementations of a FRR to evaluate chiral loop inte-
complication they add is that the ultraviolet behavior of
the loop integrals must be regulated in some way.
Hadronic physics presents fascinating theoretical chal-
lenges to the understanding of strongly interacting sys-
tems in terms of their fundamental degrees of freedom in
QCD, quarks, and gluons. Lattice gauge theory [1] has so
far provided the only rigorous method for solving non-
perturbative QCD. We will show that recent progress
within the field [2] together with advances in effective
field theory (EFT) [3] now permit systematically accurate
chiral extrapolations of observables, enabling the deter-
mination of the physical properties of hadrons from lat-
tice QCD simulations, even though it is not yet feasible to
make calculations at the physical quark mass.

It is now possible to make extremely accurate lattice
QCD calculations of the masses of hadrons, such as the
nucleon, with dynamical fermions. Indeed the CP-PACS
group has just reported data with a precision of order 1%
[2]. However, such precise evaluations are limited to
quark masses an order of magnitude larger than those
found in nature. In order to compare with experiment,
which is after all one of the main aims in the field, it is
therefore necessary to extrapolate in quark mass. Such an
extrapolation is complicated by the unavoidable nonana-
lytic behavior in quark mass, which arises from
Goldstone boson loops in QCD with dynamically broken
chiral symmetry [4].

Early work motivated by the important role of
Goldstone bosons led to the construction of chiral quark
models [5], which incorporated this nonanalytic behavior.
An alternative, systematic approach, designed to avoid
reference to a model, involved the construction of an
effective field theory to describe QCD at low energy [6].
The application to baryons has developed to the point
where chiral perturbation theory (�PT) is now under-
stood as a rigorous approach near the chiral limit [7,8].

Because it is defined as an expansion in momenta and
masses about the chiral limit, �PT provides an attractive
approach to the problem of quark mass extrapolation for
lattice QCD. The advantages of formulating �PT with a
finite-range regulator (FRR), as opposed to the com-
monly implemented dimensional regularization (DR),
have been demonstrated by Donoghue et al. [9]. Early
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grals in �PT suggested that, in the context of the extrapo-
lation of lattice data from relatively large quark masses,
FRR provides a more reliable procedure [10,11]. There has
been considerable debate on whether current lattice data
are within the scope of dimensionally regularized �PT or
whether the form of the FRR chosen introduces signifi-
cant model dependence [12]. However, this issue has
now been addressed in a recent detailed study of numer-
ous regularization schemes in �PT, both dimensional and
FRR [3]. This study quantified the applicable range of the
EFT and established that all of the FRR considered pro-
vided equivalent results over the range m2

� & 0:8 GeV2.
Here we demonstrate that by adopting the FRR formu-

lation of �PT one can improve its convergence properties
to the point where the chiral extrapolation to the physical
quark mass can be carried out with a systematic uncer-
tainty of less than 1%. Given this remarkable result, the
current errors on extrapolated quantities are dominated
by the statistical errors arising from the large extrapola-
tion distance —the lightest simulated pion mass being
typically m2

� ’ 0:27 GeV2, in comparison with the physi-
cal value, 0:02 GeV2.

In the usual formulation of effective field theory, the
nucleon mass as a function of the pion mass (given that
m2

� / mq [13]) has the formal expansion

MN � a0 � a2m2
� � a4m4

� � a6m6
� � � � �

� 	�
NN � 	�

N� � 	�
tad: (1)

In principle, the coefficients, an, can be expressed in
terms of the parameters of the underlying effective
Lagrangian to a given order of chiral perturbation theory.
In practice, for current applications to lattice QCD, the
parameters must be determined by fitting to the lattice
results themselves. The additional terms, 	�

NN , 	�
N�, and

	�
tad, are loop corrections involving the (Goldstone) pion,

which yield the leading (LNA) and next-to-leading non-
analytic (NLNA) behavior of MN . As these terms involve
the coupling constants in the chiral limit, which are
essentially model independent [14], the only additional
 2004 The American Physical Society 242002-1
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Traditionally, one uses dimensional regularization,
which (after infinite renormalization of a0 and a2) leaves
only the nonanalytic terms, cLNAm3

� and cNLNAm4
� �

ln�m�=�, respectively. (Note that the coefficient cLNA
is the sum of contributions from the N ! �� and tad-
pole diagrams.) Within dimensional regularization, one
then arrives at a truncated power series for the chiral
expansion,

MN � c0 � c2m
2
� � cLNAm

3
� � c4m

4
�

� cNLNAm
4
� ln

m�


� c6m

6
� � � � � ; (2)

where the bare parameters, ai, have been replaced by the
finite, renormalized coefficients, ci. Through the chiral
logarithm, one has an additional mass scale, , but the
dependence on this is eliminated by matching c4 to
‘‘data’’ (in this case, lattice QCD). We work to fourth
order in the chiral expansion and include the next analytic
term to compensate short-distance physics contained in
the NLNA loop integrals, as suggested in Ref. [9].
Provided the series expansion in Eq. (2) is convergent
over the range of values of m� where the lattice data exist,
one can then use Eq. (2) to evaluate MN at the physical
pion mass. Unfortunately, there is considerable evidence
that this series is not sufficiently convergent [3,12,15–17].

In line with the implicit  dependence of the coeffi-
cients in the familiar dimensionally regulated �PT, the
systematic FRR expansion of the nucleon mass is

MN � a�0 � a�2 m
2
� � a�4 m

4
� � a�6 m

6
� � 	�

NN�m�;��

� 	�
N��m�;�� � 	�

tad�m�;��; (3)

where the dependence on the shape of the regulator is
implicit. The dependence on the value of � and the choice
of regulator are eliminated, to the order of the series
expansion, by fitting the coefficients, a�n , to lattice QCD
data. The clear indication of success in eliminating model
dependence, and hence having found a suitable regulari-
zation method, is that the higher order coefficients
(a�i ; i 
 4) should be small and that the renormalized
coefficients, ci, and the result of the extrapolation should
be insensitive to the choice of ultraviolet regulator.

The key feature of finite-range regularization is the
presence of an additional adjustable regulator parameter
which provides an opportunity to suppress short-distance
physics from the loop integrals of effective field theory.
This short-distance physics is otherwise treated incor-
rectly, as the effective fields are not realized in QCD at
short distances. As emphasized in Eq. (3) by the super-
scripts �, the unrenormalized coefficients of the analytic
terms of the FRR expansion are regulator-parameter de-
pendent. The large m� behavior of the loop integrals and
the residual expansion (the sum of the a�i terms) are
remarkably different. Whereas the residual expansion
will encounter a power divergence, the FRR loop inte-
grals will tend to zero as a power of �=m� as m� becomes
242002-2
large. Thus, � provides an opportunity to govern the
convergence properties of the residual expansion and
thus the FRR chiral expansion. Since hadron masses are
observed to be smooth, almost linear functions of m2

� for
quark masses near and beyond the strange quark mass
[18], it should be possible to find values for the regulator-
range parameter, �, such that the coefficients a�4 and
higher are truly small. In this case, the convergence
properties of the residual expansion and the loop expan-
sion are excellent and their truncation benign [19].

In order to investigate the model dependence associ-
ated with the truncations of the chiral expansions, several
regulators are considered. We evaluate the loop integrals
in the heavy baryon limit

	�
BB0 � �

3

16�2f2�
GBB0

Z 1

0
dk

k4u2�k�
!�k��!BB0 �!�k��

; (4)

	�
tad � �

3

16�2f2�
c2m2

�

�Z 1

0
dk
�
2k2u2�k�������������������
k2 �m2

�

p �
�t0

�
; (5)

taking u�k� to be either a sharp cutoff, a dipole, a mono-
pole, or finally a Gaussian. These regulators have very
different shapes, with the only common feature being that
they suppress the integrand for momenta greater than �.
In Eq. (4) we have GNN � g2A (with gA � 1:26) and
GN� � 16g2A=9 (to reproduce the empirical width of the

� resonance). In addition, !�k� �
������������������
k2 �m2

�

p
, !NN � 0,

and !N� � 292 MeV, the physical �-N mass splitting. In
Eq. (5) t0, defined such that the term in braces vanishes at
m� � 0, is a local counter term introduced in FRR to
ensure a linear relation for the renormalization of c2.

In addition, we also consider the case where Eq. (2) is
modified to maintain the correct branch-point (BP) struc-
ture at m� � !N� [20], in particular,

	�
N� � �

3

16�2f2�
GN�

(
1

4
�2�3 � 3m2�� log

�
m2

2

�

�
1

2
��2 �m2�3=2

� log

 
��

�������������������
�2 �m2

p

��
�������������������
�2 �m2

p

!)
: (6)

One can now compare the expansion about the chiral
limit for these six different regularization schemes in
order to assess their rate of convergence. It turns out
that all the FRR expansions precisely describe the dimen-
sional regularization expansion over the range m2

� 2
�0; 0:7� GeV2. Furthermore, the smooth, FRR formula-
tions are consistent with each other, for the renormalized
chiral coefficients, c0;2;4, to an extraordinarily precise
level [3]. This ensures a systematically accurate extrapo-
lation to the regime of physical quark masses.

For this study we use recent precision nucleon mass
data obtained in lattice QCD by CP-PACS [2].
Simulations are performed using the mean-field im-
proved clover fermion action with the Iwasaki gluon
242002-2
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FIG. 1. Fits to lattice data for various ultraviolet regulators.
The sharp cutoff, monopole, dipole, and Gaussian cases are
depicted by solid lines, indistinguishable on this plot. The
dimensional regularized forms are illustrated by the dash-
dotted curves, with the correct branch point corresponding to
the higher curve. Lattice data are from Ref. [2].

TABLE II. Renormalized expansion coefficients in the chiral
limit obtained from various regulator fits to lattice data. (All
quantities are in units of appropriate powers of GeV.) Errors are
statistical in origin arising from lattice data. Deviations in the
central values indicate systematic errors associated with the
chiral extrapolation.

Regulator c0 c2 c4

Dim. regulator 0:827�120� 3:58�50� 3:6�15�
Dim. regulator (BP) 0:875�120� 3:14�50� 7:2�15�
Sharp cutoff 0:923�130� 2:61�66� 15:3�16�
Monopole 0:923�130� 2:45�67� 20:5�30�
Dipole 0:922�130� 2:49�67� 18:9�29�
Gaussian 0:923�130� 2:48�67� 18:3�29�

P H Y S I C A L R E V I E W L E T T E R S week ending
18 JUNE 2004VOLUME 92, NUMBER 24
action, known to provide small scaling violations. We
choose the largest volumes at the two smallest lattice
spacings [21] such that the results are good approxima-
tions to the continuum theory. These data are used to
determine the unknown parameters, a0–a6, in Eq. (3)
for each choice of regularization. Only in the naive,
dimensionally regulated form, i.e., without the N ! ��
branch structure of Eq. (6), do the ai coincide with the ci
of Eq. (2). It is only the extreme accuracy of the data
which makes the determination of as many as four pa-
rameters possible.

Figure 1 shows the resulting fits to the lattice data over
the range m2

� 2 �0; 1:0�GeV2, with the corresponding
parameters given in Table I. It is remarkable that all
four curves based on FRR are indistinguishable on this
plot. Furthermore, we see from Table I that the coefficient
of m4

� in all of those cases is quite small—an order of
magnitude smaller than the dimensionally regularized
forms. Similarly, the FRR coefficients of m6

� are again
much smaller than their DR counterparts. This indicates
that the residual series, involving ai, is converging when
the chiral loops are evaluated with a FRR.
TABLE I. Bare, unrenormalized, parameters extracted from
the fits to lattice data displayed in Fig. 1. All quantities are in
units of appropriate powers of GeV and  � 1 GeV in Eq. (2).
Dim. stands for dimensional and BP for the branch-point form
defined in Eq. (6).

Regulator a0 a2 a4 a6 � �2=dof

Dim. regulator 0.827 3.58 3.63 �0:711 � � � 0.43
Dim. regulator (BP) 0.792 4.15 8.92 0.384 � � � 0.41
Sharp Cutoff 1.06 1.47 �0:554 0.116 0.4 0.40
Monopole 1.74 1.64 �0:485 0.085 0.5 0.40
Dipole 1.30 1.54 �0:492 0.089 0.8 0.40
Gaussian 1.17 1.48 �0:504 0.095 0.6 0.40

242002-3
As explained by Donoghue et al. [9], one can combine
the order m0;2;4...

� terms from the self-energies with the
‘‘bare’’ expansion parameters, a0;2;4..., to obtain physi-
cally meaningful renormalized coefficients. These are
shown in Table II, in comparison with the corresponding
DR coefficients found using Eq. (2). Details of this renor-
malization procedure are given in Ref. [3]. The degree of
consistency between the best-fit values found using all
choices of FRR is remarkably good. On the other hand,
DR significantly underestimates c4. We can understand
the problem very simply; it is not possible to accurately
reproduce the necessary 1=m2

� behavior of the chiral
loops (for m� > �) with a third order polynomial in m2

�.
It is clear that the use of an EFT with a FRR enables

one to make an accurate extrapolation of the nucleon
mass as a function of the quark mass. Although minimal
deviation is seen between the best-fit curves, we need to
determine how well these curves are in fact constrained
by the statistical uncertainties of the lattice data. As all
data points are statistically independent, the one-sigma
deviation from the best-fit curve is defined by the region
for ��2 � �2

min�=dof < 1. We use a standard �2 measure,
weighted by the squared error of the simulated data point,
and �2

min corresponds to the optimum fit to the data.
0.0 0.2 0.4 0.6 0.8 1.0
m 

2  GeV2 

0.8

1.0

1.2

1.4

1.6

1.8

M
N

 G
eV

 

0.0 0.2 0.4 0.6 0.8 1.0
mπ

2 ( GeV ) 

0.8

1.0

1.2

1.4

1.6

1.8

M
N

(
) 

FIG. 2. Error analysis for the extraction of the nucleon mass
using a dipole regulator. The shaded region corresponds to the
region allowed within the present statistical errors.

242002-3



TABLE III. The nucleon mass, mN (GeV), and the sigma
commutator, 	N (MeV), extrapolated to the physical pion
mass obtained in a NLNA (fourth order) chiral expansion.
Convergence of the expansion is indicated by the nucleon
mass obtained in an analysis where we retain only the LNA
(third order) behavior.

LNA NLNA
Regulator mN mN 	N

Dim. regulator 0.784 0:884� 0:103 50:3� 10:0
Dim. regulator (BP) 0.784 0:923� 0:103 42:7� 10:0
Sharp cutoff 0.968 0:961� 0:116 34:0� 13:0
Monopole 0.964 0:960� 0:116 33:0� 13:0
Dipole 0.963 0:959� 0:116 33:3� 13:0
Gaussian 0.966 0:960� 0:116 33:2� 13:0
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We show the one-sigma variation from the best-fit di-
pole curve by the shaded region in Fig. 2. The primary
source of the large error band is the large extrapolation
distance. It is clear that a simulated point at a pion
mass, m2

� � 0:1 GeV2, would greatly reduce the statisti-
cal error in the extrapolation. The extrapolated values for
the nucleon mass are shown in Table III [25]. It is espe-
cially interesting to observe the very small difference
between the physical nucleon masses obtained with
each FRR when we go from LNA to NLNA, i.e., when
the effect of the � is included. (The change is typically a
few MeV for a FRR but more than 100 MeV for DR.) Once
again the convergence properties of the FRR expansion
are remarkable.

To summarize, we have shown that the extremely pre-
cise dynamical simulation data from CP-PACS permit
one to determine four parameters in the chiral extrapo-
lation formulas, Eqs. (2) and (3). Whereas the former
(involving dimensional regularization) does not appear
to be convergent over the required mass range, the im-
proved convergence properties of the finite-range regu-
larized expansion yield an excellent description of the
data over the full mass range, regardless of the functional
form chosen for the vertex regulator. Table III summa-
rizes the resulting values of the physical nucleon mass
and sigma commutator. The systematic error in the chiral
extrapolation, based upon a smooth FRR, is less than 1%
for the nucleon mass and within 2% for the sigma com-
mutator. We note also that the systematic uncertainty in
the determination of the low energy constant, c0, is less
than 1%, while for c2 it is at the level of a few percent.
With the issue of chiral extrapolation addressed, there is
an urgent need for high precision lattice QCD simulations
at m2

� � 0:1 GeV2 in order to reduce the present statistical
error on the extrapolation. Such simulations should be
242002-4
feasible with the new generation of computers dedicated
to lattice QCD currently under construction.
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