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Abstract

Current issues associated with nucleon axial matrix elements are
studied, including the Goldberger-Treiman discrepancy, the induced
pseudoscalar, and SU(3) chiral perturbation theory.
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1 Introduction

I have been given the task of speaking about the nucleon axial matrix ele-
ments. In comparison with the many exciting things being discussed at this
meeting this may seem rather prosaic. However, I will try to convince you
otherwise by discussing issues associated with the Goldberger-Treiman dis-
crepancy, recent and future measurements of the induced pseudoscalar, and
the renormalizations of the axial couplings within SU(3) chiral perturbation
theory.

2 The Goldberger-Treimen Discrepancy OR

Time Dependence of Fundamental Con-

stants

Many years ago Dirac noticed that the ratio of electrical to gravitational
forces between a pair of electrons was equal to α/(Gm2

e) ∼ 1040. In asking
himself how such an enormous dimensionless number could arise he noticed
that 1040 is also the age of the universe measured in fundamental units of
time—i.e. the time it takes light to traverse an elementary particle—1017

sec./ 10−23 sec.! He then asked if it were possible that the electrical to
gravitational ratio might change as the universe evolved. It turns out on
further analysis that this is extremely unlikely—the consequences of even
relatively small changes to either the fine structure or gravitational constants
turn out to be significant (the anthropic principle),[1] but I am prepared
today to point out an arena where the changes in a fundamental coupling
have been major, and they have occured within a generation—-the nucleon
axial coupling. Below I give a list of values which I have gathered from
various sources, and it is clear that there has been a seven percent increase
in gA within a decade!

1959 : gA/gV = 1.17 ± 0.02[2] 1965 : gA/gV = 1.18 ± 0.02[3]
1967 : gA/gV = 1.24 ± 0.01[4] 1969 : gA/gV = 1.26 ± 0.02[5]

(1)

In fact this number continues to increase—the latest published experiments
from Grenoble give gA/gV = 1.266±0.004,[6] which is the value I shall employ
in this note.
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Now my facetious discussion in the previous paragraph is at one level
amusing, but at another has some important ramifications when considered
in terms of the Goldberger-Treiman relation[15]

MNgA(0) = FπgπNN(0) (2)

which is required by chiral invariance and hence by QCD. Now I have in-
dicated in Eq. 2 that the axial coupling gA and the pion-nucleon coupling
constant gπNN are both to be evaluated at zero momentum transfer. However
while the former is the (”time-dependent”) number quoted above, the latter
is not a physical quantity. What is directly measurable is the pion-nucleon
coupling evaluated at the pion mass-squared—gπNN (m2

π), so it is useful to
examine the Goldberger-Treiman discrepancy

∆π = 1 − MgA(0)

FπgπNN(m2
π)

= 1 − gπNN(0)

gπNN(m2
π)

(3)

In the venerable text Bjorken and Drell this number is described as be-
ing less than 0.1, but I want to argue that it must be much less. Indeed,
while gπNN(0) is not an observable, one can show that in reasonable mod-
els such as the linear sigma model or via correlated π − ρ exchange one
should expect ∆π ≃ 0.02. However, there is another interesting approach via
the so-called Dashen-Weinstein theorem,[7] which uses the fact that while
there does not exist a prediction for ∆π in chiral SU(2), since it is given in
terms of an a priori unknown counterterm, in SU(3) this quantity is given in
terms of a sum of quark masses times an SU(3) octet operator. Thus a re-
lation exists—the Dashen–Weinstein theorem—between corresponding kaon
and pion quantities[8, 9]

∆π =

√
3

2

FK

Fπ

mu + md

mu + ms

(

gΛKN

gπNN

∆Λ
K − 1√

6

gΣKN

gπNN

∆Σ
K

)

(4)

where

∆K = 1 − (MN + MΣ,Λ)gA(0)√
2FKg(m2

K)
=

{

0.32 Λ
−0.05 Σ

(5)

where I have used the values[11, 12]

g(m2
K) gA(0)

Λ −13.5 −0.72
Σ 4.3 0.34

(6)
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Then using (mu + md)/(mu + ms) = m2
π/m2

K we find ∆theo
π ≃ 0.028. Besides

changes in the size of the axial coupling, however, the size of Fπ decreased by
1% in 1990 when it was realized that previous evaluations had not included
the running of the weak coupling constant,[10] and there has been continuous
debate about the size of gπNN(m2

π), with current analyses favoring either the
Karsruhe value 13.4[13] or the VPI number 13.05.[14] Thus we find

gπNN = 13.4 −→ ∆π = 4.1%, or ms/m̂ ≈ 48

gπNN = 13.05 −→ ∆π = 1.5%, or ms/m̂ ≈ 17 (7)

so that if the low value of gπNN is confirmed, the Goldberger-Treiman dis-
crepancy would strongly favor the conventional χpt picture (ms/m̂ = 25)
over its generalized version, which predicts ms/m̂ < 25.[9]

3 The Induced Pseudoscalar

The axial matrix element of the nucleon consists in general of two pieces, the
usual axial coupling and the induced pseudoscalar1

< p(p′)|Aµ|n(p) >= ū(p′)(gA(q2)γµγ5 + gP (q2)
qµ

2M
γ5)u(p) (8)

and chiral considerations require that this new piece is dominated by its pion
pole contribution

gP (q2) =
4MFπ

m2
π − q2

gπNN(q2) ≃ 4MFπ

m2
π − q2

gπNN(m2
π) − 2M2

3
gA(0)r2

A (9)

where rA is the axial radius. This result is generally used in the combination

rP =
mµ

2MgA(0)
gP (q2 = −0.9m2

µ) = 6.7 (10)

relevant for muon capture. This is the standard approach and is used be-
cause the contraction of the four-vector qµ with the lepton tensor results
in a factor of the lepton mass accompanied by the nucleon matrix element

1In general one could also allow an axial tensor coupling, but this ”second class current”
is disallowed by G-invariance.
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of γ5, which brings in an additional suppression |~q|/2M , meaning that de-
spite the extraordinary precision of modern nuclear beta decay experiments,
any effects from gP arise only at O[rP m2

e/(2Mmµ)] ∼ 10−5!. On the other
hand in muon capture this factor becomes rP mµ/2M , which means that the
pseudosclar contributes at the same order as weak magnetism and becomes
in principle measurable. The one problem here is that typically one has
only a single number—the capture rate—to work with so that in order to
extract the desired value of rP one must make three reasonable, but still
model-dependent, assumptions—i) the validity of CVC in order to extract
fV (q2), fM(q2) from electron; scattering data; ii) the validity of the impulse
approximation to evaluate gA(q2); and iii) the assumption of G-invariance to
rule out the presence of second class currents. Using these assumptions one
finds the experimental values

rP =











6.5 ± 2.4 H [17]
6.9 ± 0.2 3He[18]
9.0 ± 1.7 12C[19]

(11)

which are in agreement with the chiral expectations. It should be noted
that the extraordinary precision associated with the 3He number is allowed
because of a spectacular new PSI experiment which measured the capture
rate to 3%

Γµ(
3He) = 1496 ± 4sec.−1 (12)

In order to eliminate some of this model dependence, there are additional
approaches which have been and which are being pursued

i) Radiative muon capture on hydrogen: This is the approach which has
received the most recent attention, because the result[20]

rP = 9.8 ± 0.7 ± 0.3 (13)

is at variance with the chiral prediction at the 3σ level. Now this
TRIUMF measurement is extraordinarily difficult both because of the
tiny 10−8 branching fraction compared to ordinary capture and be-
cause of the presence of many possible experimental backgrounds.
However, it has the advantage that at the maximum photon energy
kmax = 100MeV the momentum transfer is qmax = m2

µ compared to the
value q2

µ = −0.9m2
µ which obtains in the ordinary muon capture case.
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Integrated over the photon spectrum this leads to an enhancement of
about a factor of three for pseudoscalar effects in RMC over those in
OMC.[21] Clearly this is an experiment that should be repeated.

ii) Threshold pion photoproduction on hydrogen: This might seem a
strange place to study nucleon axial matrix elements, but this is possi-
ble because of the PCAC relation[22]

< π+np′|V em
µ |pp >

q→0−→ −i√
2Fπ

< np′|A−

µ |pp > (14)

The variation in q2 which is allowed by the use of electroproduction
rather than photoproduction permits a check of the q2-variation of both
axial matrix elements. A recent Saclay experiment produced in this way
a measurement of the axial radius rA which was in good agreement
with parallel neutrino scattering measurements, when a small chiral
symmetry offset is included, but more importantly for our case for the
first time a measurement was made of the shape of gP (q2) which was
in good agreement with the pion pole dominance assumption.[23]

iii) Correlations in polarized muon capture on 3He: The final method
which is being pursued at present goes back to an old idea to mea-
sure the correlation of the final neutrino direction with initial state
polarization in the case that the muon and target are polarized.[24] Of
course, the muon is almost completely longitudinally polarized at the
time of its capture, but unless the target too is polarized this polar-
ization for the most part lost as the muon cascades down through the
various atomic levels before finally reaching the ground state–1S–level
from which it is captured. In the general case, when one has muon
polarization P ′n̂ and (spin 1/2) target polarization P n̂ the decay dis-
tribution is found to be of the form

d2Γµ

dΩk̂

= A − 2PP ′B − 1

2
(P + P ′)Cn̂ · k̂ + 2PP ′D

[

(n̂ · k̂)2 − 1

3

]

(15)

where the structure functions A, B, C, D are functions of the weak form-
factors gv, gM , gA, gP whose specific forms can be found in the literature.
The important feature for our case is that D has a strong dependence on
gP , and thus measurement of the angular correlations allows one to pick
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out the induced pseudoscalar. This measurement was attempted unsuc-
cessfully many years ago at LAMPF, but only recently has the ability
to polarize 3He at high levels given hope that this experiment can ac-
tually be carried out. Preliminary results at TRIUMF are encouraging,
but the precision is not yet at a level where anything definitive can be
said.[25]

4 Axial Couplings and SU(3)

The existence of semileptonic hyperon decays such as Λ, n →
pe−ν̄e, Σ

−, Ξ− → Λe−ν̄e, Ξ
− → Σ0e−ν̄e, etc. allows the probing of axial

matrix elements in SU(3). Indeed it has long been known that to leading
order in chiral symmetry one can describe such decays in terms of simple f,d
parameters, e.g.

gpn
V = fV gnp

A = fA + dA

gpΛ
V = −

√

3
2
fV gpΛ

A = −
√

1
6
(3fA + dA)

gnΣ−

V = −fV gnΣ−

A = −fA + dA

(16)

This type of fit yields remarkably good results—χ2
d.o.f ≈ 8.5 for ten degrees

of freedom, when small ≤ 5% quark model symmetry breaking effects are
added.[26] One can try to do even better by including chiral loops using
heavy baryon chiral perturbation theory. At one loop one finds results[27]

gij
A = (fA, dA)ij +

∑

m

βij
mm2

m ln
m2

m

µ2
(17)

However, this inclusion of supposedly model-independent corrections brings
in modifications to the axial couplings at the level of 30-50% which results
in a vastly increased χ2. Of course, one can restore experimental agreement
by the addition of appropriately chosen higher order counterterms, but then
one worries about the convergence of the chiral expansion and is certainly
justified in asking what is going on. Our answer is that this simple chiral
picture omits an important piece of physics, which is finite hadronic size.[28]
The simple chiral expansion assumes (at lowest order) propagation of mesons
between point baryons, while in the real world any such propagation takes
place between objects about a fermi or so in size. That means that only
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the long-distance component of the meson loop is really model-independent
and to be trusted. One can eliminate such short distance components by use
of a cutoff regularization with scale ∼300 MeV ≤ Λ ≤∼ 600 MeV of order
inverse baryon size rather than the usual dimensional regularization which
mixes both long and short distance effects.[29] The specific form of the cutoff
function is unimportant, so for calculational purposes it is useful to use a
simple dipole. The result is that the heavy baryon integral responsible for
loop corrections to axial couplings

Iij(m
2) =

∫

d4k

(2π)4

kikj

(k0 − iǫ)2(k2 − m2 + iǫ)
=

−iδij

16π2
m2 ln

m2

µ2
(18)

is replaced by

Ĩij =
∫

d4k

(2π)4

kikj

(k0 − iǫ)2(k2 − m2 + iǫ)

(

Λ2

Λ2 − k2

)2

=
−iδij

16π2
J(m2) (19)

where

J(m2) =
Λ4

(Λ2 − m2)2
m2 ln

m2

Λ2
+

Λ4

Λ2 − m2
(20)

We see then that unlike Eq. 18 which emphasizes heavy meson (short-
distance) propagation over that of light mesons, in the large mass limit

J(m2)
m2>>Λ2

−→ Λ4

m2
ln

m2

Λ2
→ 0 (21)

On the other hand in the large cutoff limit we have

J(m2)
Λ2>>m2

−→ Λ2 + m2 ln
m2

Λ2
(22)

which reproduces the usual dimensional regularization result plus a quadratic
term in Λ. That this latter piece does not destroy the chiral invariance can
be seen from the feature that it can be absorbed in a renormalization of the
basic couplings[30]

dr
A = d

(0)
A − 3

2
dA(3d2

A + 5f 2
A + 1)

Λ2

16π2F 2
π

f r
A = f

(0)
A − 1

6
fA(25d2

A + 63f 2
A + 9)

Λ2

16π2F 2
π

(23)
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dim. Λ=300 Λ=400 Λ=500 Λ=600
gA(p̄n) 1.72 0.37 0.53 0.69 0.84
gA(p̄Λ) -1.78 -0.34 -0.51 -0.67 -0.84

gA(Λ̄Σ−) 1.17 0.23 0.34 0.45 0.56
gA(n̄Σ−) 0.36 0.07 0.10 0.14 0.17
gA(Λ̄Ξ−) 0.83 0.15 0.23 0.31 0.39
gA(Σ̄0Ξ−) 2.46 0.45 0.68 0.91 1.15

Table 1: Given are the nonanalytic contribtions to gA for various transitions
in dimensional regularization and for various values of the cutoff parameter
Λ in MeV.

However, in this procedure with reasonable values of the cutoff, the SU(3)
chiral expansion is now under control, as can be seen in Table 1.

This brings such results into agreement with typical chiral bag calcula-
tions, such as the cloudy bag,[31] and there is no longer any need to append
large counterterm contributions in higher orders.

5 Conclusion

We have above considered an old subject—that of nucleon axial matrix
elements—from the point of view of modern experiments. I hope that I have
convinced you that despite the age of the field, the new results in the areas
of Goldberger-Treiman discrepancies, induced pseudoscalar measurements,
and SU(3) chiral perturbative studies promise continued interest even as we
approach the millenium.
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also supported by the National Science Foundation.

8



References

[1] For a recent slant and for further references see V. Agrawal et al., hep-
ph/9707380.

[2] A.N. Sosnovskii et al., Sov. Phys. JETP 8, 739 (1959).

[3] S.A. Adler, Phys. Rev. Lett. 14, 1051 (1965).

[4] C.J. Christensen et al., Phys. Lett. B26, 11 (1967); Phys. Rev. D5,
1628 (1972).

[5] R.J. Blin-Stoyle, Fundamental Interactions and the Nucleus,
North-Holland, New York (1969).

[6] K. Schreckenbach et al., Phys. Lett. B259, 353 (1991).

[7] R. Dashen and M. Weinstein, Phys. Rev. 188, 2330 (1969).

[8] C.A. Dominguez, Riv. del Nuovo Cimento 8,#6,1 (1985).

[9] N.H. Fuchs, H. Sazdjian, and J. Stern, Phys. Lett. B238, 380 (1990).

[10] B.R. Holstein, Phys. Lett. B244, 83 (1990).

[11] Particle Data Group, Phys Rev. D50, 1173 (1995).

[12] H. Haberzettl et al., nucl-th/9804051.

[13] R. Koch and E. Pieterinin, Nucl. Phys. A336, 331 (1980).

[14] R. Arndt et al., Phys. Rev. Lett. 65, 157 (1990).

[15] M.L. Goldberger and S.B. Treiman, Phys. Rev. 110, 1478 (1958).

[16] J.D. Bjorken and S.D. Drell, Relativistic Quantum Mechanics,
McGraw-Hill, New York (1964).

[17] G. Bardin et al., Phys. Lett. B104, 320 (1981).

[18] P. Ackerbauer et al., Phys. Lett. B417, 224 (1998).

[19] V. Roesch et al., Phys. Rev. Lett. 46, 1507 (1981).

9

http://arXiv.org/abs/hep-ph/9707380
http://arXiv.org/abs/hep-ph/9707380
http://arXiv.org/abs/nucl-th/9804051


[20] G. Jonkmans et al., Phys. Rev. Lett. 77, 4512 (1996).

[21] H.W. Fearing, Phys. Rev. C21, 1951 (1980); D.S. Beder and H.W. Fear-
ing, Phys. Rev. D39, 3493 (1989).

[22] A.I Vainshtein and V.I. Zakharov, Nucl. Phys. B36 (1972); V. Bernard,
N. Kaiser, and U.-G. Meissner, Nucl. Phys, A607, 379 (1996).

[23] S. Choi et al., Phys. Rev. Lett. 71, 3927 (1993).

[24] See, e.g. B.R. Holstein, Phys. Rev. C3, 1964 (1972).

[25] W.J. Cummings et al., Proc. WEIN ’95, ed. H. Ejiri, T. Kishimoto, and
T. Sato, World Scientific, Singapore (1995), p. 381; G. Cates, private
communication.

[26] J.F. Donoghue, B.R. Holstein, and S.W. Klimt, Phys. Rev. D35, 934
(1987]

[27] J. Bijnens, H. Sonoda, and M.B. Wise, Nucl. Phys. B261, 185 (1985).

[28] J.F. Donoghue, B.R. Holstein, and B. Borasoy, hep-ph/9804281.

[29] J.F. Donoghue and B.R. Holstein, hep-ph/9803312.

[30] M.A. Luty and M. White, Berkeley prepring LBL33993 (1993).

[31] See, it e.g. T. Yamaguchi et al., Nucl. Phys. A500, 129 (1989); K.
Kubodera et al., Nucl. Phys. A439, 695 (1985); S. Theberge et al.,
Phys. Rev. D22, 2838 (1980); A.W. Thomas, J. Phys. G7, L283 (1981);
R.E. Stuckey and M.C. Birse, J. Phys. G23, 29 (1997).

10

http://arXiv.org/abs/hep-ph/9804281
http://arXiv.org/abs/hep-ph/9803312

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	1998

	Nucleon Axial Matrix Elements
	BR Holstein
	Recommended Citation


	arXiv:nucl-th/9806036v1  12 Jun 1998

