3 research outputs found

    Highly replicated sampling reveals no diurnal vertical migration but stable species-specific vertical habitats in planktonic foraminifera

    No full text
    Diurnal vertical migration (DVM) is a widespread phenomenon in the upper ocean, but it remains unclear to what degree it also involves passively transported micro- and meso-zooplankton. These organisms are difficult to monitor by in situ sensing and observations from discrete samples are often inconclusive. Prime examples of such ambiguity are planktonic foraminifera, where contradictory evidence for DVM continues to cast doubt on the stability of species vertical habitats, which introduces uncertainties in geochemical proxy interpretation. To provide a robust answer, we carried out highly replicated randomised sampling with 41 vertically resolved plankton net hauls taken within 26 hours in a confined area of 400 km2 in the tropical North Atlantic, where DVM in larger plankton occurs. Manual enumeration of planktonic foraminifera cell density consistently reveals the highest total cell concentrations in the surface mixed layer (top 50 m) and analysis of cell density in seven individual species representing different shell sizes, life strategies and presumed depth habitats reveals consistent vertical habitats not changing over the 26 hours sampling period. These observations robustly reject the existence of DVM in planktonic foraminifera in a setting where DVM occurs in other organisms

    Scales of Population Dynamics, Ecology and Diversity of Planktonic Foraminifera and their Relationship to Particle Flux in the Eastern Tropical Atlantic: Cruise No. M140, 11.8.2017-5.9.2017, Mindelo (Cabo Verde)-Las Palmas (Spain) - FORAMFLUX

    Get PDF
    Cruise M140 combined sampling of plankton, mineral dust and other particles in the water column with recovery of data and samples from long-term observational platforms (sediment traps and dust-collecting buoys). The aim of the cruise was to provide new observations to improve our understanding of the ecology of planktonic foraminifera as important carriers of paleoceanographic proxies and to investigate how mineral dust deposition and the production of marine snow and biogenic particle ballast vary in space and time and how they affect the marine biological pump. To this end, the cruise followed a transect in the central western Atlantic between oligotrophic waters of the subtropical gyre and the productive coastal waters off Mauretania affected by coastal upwelling. To characterise population dynamics, ecology and physiology of planktonic foraminifera, we obtained a series of fourteen vertically resolved plankton net profiles along the cruise track, together with profiles of physical and chemical properties of the ambient water masses. Live foraminifera extracted from these profiles were used to quantify photosynthetic activity of selected species and determine their photoadaptation. High-resolution spatial and temporal sampling of the upper 300 m over 24 hours was carried out at two locations (recovering 41 and 46 vertical profiles), allowing the characterisation of patchiness and daily vertical migration of planktonic foraminifera. Moorings with sediment traps monitoring the seasonal and short-term variability of particle fluxes and buoys monitoring atmospheric dust deposition in the region were successfully recovered in the central Atlantic (M3), south of Cabo Verde (M1) and off Mauretania (CB and CBi) and redeployed in the latter two regions to continue the monitoring. Short-term variability of sizes and types of sinking particles in the water column were characterised in each of the monitoring regions with drifting sediment traps and in the Cape Blanc region off Mauretania also with continuous vertical particle camera profile. All aims of the cruise have been met – the plankton sampling and particle characterization studies were carried out successfully and all moorings and buoys could be recovered and/or redeployed as planned
    corecore