6 research outputs found

    Medical photography using mobile devices

    Get PDF
    The limitations of image quality in mobile device technology raise the question whether smart phones are suitable for medical photography. The answer is it depends. There are many factors to consider, in particular the purpose of capture and whether a standardised or non-standardised approach is required. A correlation study comparing on-site wound evaluation versus remotely viewed digital images in plastic and reconstructive emergency surgery concluded that efficiency in clinical decision making is less based upon the quality of imaging but on the timing and method of delivery.4 On the other hand, a case-control study evaluating the importance of standardisation in preoperative and postoperative photographs concluded that poor photographic technique can result in potentially significant error and misrepresent surgical outcomes.5 Low quality images may therefore still result in high accuracy and concordance rates where standardisation is not a prerequisite for assessment, but may be misleading in instances where standardisation is paramount, such as demonstrating preoperative and post-surgical facial aesthetic surgery

    A cross-over, randomised feasibility study of digitally printed versus hand-painted artificial eyes in adults: PERSONAL-EYE-S - a study protocol [version 2; peer review: 2 approved]

    Get PDF
    Background/objectives: Around 11,500 artificial eyes are required yearly for new and existing patients. Artificial eyes have been manufactured and hand-painted at the National Artificial Eye Service (NAES) since 1948, in conjunction with approximately 30 local artificial eye services throughout the country. With the current scale of demand, services are under significant pressure. Manufacturing delays as well as necessary repainting to obtain adequate colour matching, may severely impact a patient’s rehabilitation pathway to a normal home, social and work life. However, advances in technology mean alternatives are now possible. The aim of this study is to establish the feasibility of conducting a large-scale study of the effectiveness and cost-effectiveness of digitally printed artificial eyes compared to hand-painted eyes. Methods: A cross-over, randomised feasibility study evaluating a digitally-printed artificial eye with a hand-painted eye, in patients aged ≥18 years with a current artificial eye. Participants will be identified in clinic, via ophthalmology clinic databases and two charity websites. Qualitative interviews will be conducted in the later phases of the study and focus on opinions on trial procedures, the different artificial eyes, delivery times, and patient satisfaction. Discussion: Findings will inform the feasibility, and design, of a larger fully powered randomised controlled trial. The long-term aim is to create a more life-like artificial eye in order to improve patients’ initial rehabilitation pathway, long term quality of life, and service experience. This will allow the transition of research findings into benefit to patients locally in the short term and National Health Service wide in the medium to long term. ISRCTN registration: ISRCTN85921622 (prospectively registered on 17/06/2021

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Characteristics of immunosuppressive regulatory T cells in cutaneous squamous cell carcinomas and role in metastasis

    No full text
    BACKGROUND: Non-melanoma skin cancer is the most common cancer worldwide, and cutaneous squamous cell carcinomas (SCCs) account for substantial morbidity and mortality because of their potential for metastasis. SCCs are surrounded by an immune cell infiltrate containing regulatory T cells (Tregs). The aim of this study was to characterise Tregs in SCCs and investigate whether increased Treg numbers in primary skin SCCs are associated with subsequent metastasis.METHODS: Lymphocytes were extracted from freshly excised skin SCC tumours and corresponding peripheral blood and normal skin. Flow cytometry was used for T-cell analysis and cell sorting. Tritiated thymidine based lymphocyte proliferation assays and interferon ? (IFN?) ELISPOT assays were used to assess peritumoral lymphocyte function in vitro. Immunohistochemistry was performed on primary cutaneous SCC sections from tumours that subsequently metastasised and from those that did not after 5-year follow-up.FINDINGS: Increased frequencies of CD3+CD4+CD25hiCD127loFOXP3+ Tregs were found in SCCs (21·5% of CD4+ immune infiltrate, n=60 tumours) compared with corresponding peripheral blood (5·4%) and normal skin (7·6%). SCC Tregs expressed significantly higher levels of the co-stimulatory molecules OX40 (37·2% of FOXP3+ cell population, n=10 tumours) and 4-1BB (12·6%, n=9) than peritumoral non-regulatory T cells and Tregs from peripheral blood and normal skin (p=0·0005). The inhibitory receptor CTLA4 and the transcription factor Helios were expressed at high levels in peritumoral Tregs. SCC Tregs significantly suppressed phytohaemagglutinin-stimulated peritumoral CD4+ T-cell proliferation (p=0·005, n=10), peritumoral CD8+ T-cell proliferation (p=0·015, n=9), and IFN? secretion by CD4+ effector T cells (p=0·026, n=10). Increased in-vitro proliferation of phytohaemagglutinin-stimulated peritumoral CD4+ T cells was shown after the addition of anti-OX40 antibodies (p=0·0078, n=9 tumours) and anti-4-1BB antibodies (p=0·0039, n=9). Immunohistochemistry showed fewer CD8+ T cells in SCCs that metastasised (n=29) than in non-metastatic SCCs (n=26) (28·5% of immune infiltrate vs 44·6%%, p<0·0001) and more FOX3+ Tregs (28·5% of immune infiltrate vs 49·3%, p<0·0001).INTERPRETATION: Our study shows that immunosuppressive Tregs are present in the immune infiltrate of cutaneous SCCs, and contribute to ineffective anti-tumour immune responses, thereby permitting SCC development and promoting metastasis.FUNDING: Wellcome Trust, National Institute for Health Researc
    corecore