4 research outputs found

    The science case of the FRS Ion Catcher for FAIR Phase-0

    Get PDF
    The FRS Ion Catcher at GSI enables precision experiments with thermalized projectile and fission fragments. At the same time it serves as a test facility for the Low-Energy Branch of the Super-FRS at FAIR. The FRS Ion Catcher has been commissioned and its performance has been characterized in five experiments with 238U and 124Xe projectile and fission fragments produced at energies in the range from 300 to 1000 MeV/u. High and almost element-independent efficiencies for the thermalization of short-lived nuclides produced at relativistic energies have been obtained. High-accuracy mass measurements of more than 30 projectile and fission fragments have been performed with a multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) at mass resolving powers of up to 410,000, with production cross sections down to the microbarn-level, and at rates down to a few ions per hour. The versatility of the MR-TOF-MS for isomer research has been demonstrated by the measurement of various isomers, determination of excitation energies and the production of a pure isomeric beam. Recently, several instrumental upgrades have been implemented at the FRS Ion Catcher. New experiments will be carried out during FAIR Phase-0 at GSI, including direct mass measurements of neutron-deficient nuclides below 100Sn and neutron-rich nuclides below 208Pb, measurement of β-delayed neutron emission probabilities and reaction studies with multi-nucleon transfer.Peer reviewe

    Radioactive Beams for Image-Guided Particle Therapy : The BARB Experiment at GSI

    Get PDF
    Several techniques are under development for image-guidance in particle therapy. Positron (beta(+)) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by beta(+)-emitters generated via projectile fragmentation. A much higher intensity for the PET signal can be obtained using beta(+)-radioactive beams directly for treatment. This idea has always been hampered by the low intensity of the secondary beams, produced by fragmentation of the primary, stable beams. With the intensity upgrade of the SIS-18 synchrotron and the isotopic separation with the fragment separator FRS in the FAIR-phase-0 in Darmstadt, it is now possible to reach radioactive ion beams with sufficient intensity to treat a tumor in small animals. This was the motivation of the BARB (Biomedical Applications of Radioactive ion Beams) experiment that is ongoing at GSI in Darmstadt. This paper will present the plans and instruments developed by the BARB collaboration for testing the use of radioactive beams in cancer therapy.Peer reviewe

    Excitation of baryonic resonances in stable medium-mass nuclei of Sn

    No full text
    Isobaric charge-exchange reactions induced by beams of 112Sn have been investigated at the GSI facilities using the fragment separator FRS. The high-resolving power of this spectrometer makes it possible to obtain the isobaric charge-exchange cross sections with an accuracy of 3% and to separate quasi-elastic and inelastic contributions in the missing-energy spectra, in which the inelastic component is associated to the in-medium excitation of baryonic resonances such as the Δ\Delta resonance. We report on the results obtained for the (p,n) and (n,p) channels excited by using different targets that cover a large range in neutron excess.Comment: arXiv admin note: text overlap with arXiv:2004.0640

    Radioactive Beams for Image-Guided Particle Therapy : The BARB Experiment at GSI

    Get PDF
    Several techniques are under development for image-guidance in particle therapy. Positron (β+) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by β+-emitters generated via projectile fragmentation. A much higher intensity for the PET signal can be obtained using β+-radioactive beams directly for treatment. This idea has always been hampered by the low intensity of the secondary beams, produced by fragmentation of the primary, stable beams. With the intensity upgrade of the SIS-18 synchrotron and the isotopic separation with the fragment separator FRS in the FAIR-phase-0 in Darmstadt, it is now possible to reach radioactive ion beams with sufficient intensity to treat a tumor in small animals. This was the motivation of the BARB (Biomedical Applications of Radioactive ion Beams) experiment that is ongoing at GSI in Darmstadt. This paper will present the plans and instruments developed by the BARB collaboration for testing the use of radioactive beams in cancer therapy.peerReviewe
    corecore