7 research outputs found

    Lower limit on the neutralino mass in the general MSSM

    Full text link
    We discuss constraints on SUSY models with non-unified gaugino masses and R_P conservation. We derive a lower bound on the neutralino mass combining the direct limits from LEP, the indirect limits from gmuon, bsgamma, Bsmumu and the relic density constraint from WMAP. The lightest neutralino (mneutralino=6GeV) is found in models with a light pseudoscalar with MA<200GeV and a large value for tanÎČtan\beta. Models with heavy pseudoscalars lead to mneutralino>18(29)GeV for tan⁥ÎČ=50(10)\tan\beta=50(10). We show that even a very conservative bound from the muon anomalous magnetic moment can increase the lower bound on the neutralino mass in models with mu<0 and/or large values of tan⁥ÎČ\tan\beta. We then examine the potential of the Tevatron and the direct detection experiments to probe the SUSY models with the lightest neutralinos allowed in the context of light pseudoscalars with high tan⁥ÎČ\tan\beta. We also examine the potential of an e+e- collider of 500GeV to produce SUSY particles in all models with neutralinos lighter than the W. In contrast to the mSUGRA models, observation of at least one sparticle is not always guaranteed.Comment: 37 pages, LateX, 16 figures, paper with higher resolution figures available at http://wwwlapp.in2p3.fr/~boudjema/papers/bound-lsp/bound-lsp.htm

    Collider and Dark Matter Phenomenology of Models with Mirage Unification

    Get PDF
    We examine supersymmetric models with mixed modulus-anomaly mediated SUSY breaking (MM-AMSB) soft terms which get comparable contributions to SUSY breaking from moduli-mediation and anomaly-mediation. The apparent (mirage) unification of soft SUSY breaking terms at Q=mu_mir not associated with any physical threshold is the hallmark of this scenario. The MM-AMSB structure of soft terms arises in models of string compactification with fluxes, where the addition of an anti-brane leads to an uplifting potential and a de Sitter universe, as first constructed by Kachru {\it et al.}. The phenomenology mainly depends on the relative strength of moduli- and anomaly-mediated SUSY breaking contributions, and on the Higgs and matter field modular weights, which are determined by the location of these fields in the extra dimensions. We delineate the allowed parameter space for a low and high value of tan(beta), for a wide range of modular weight choices. We calculate the neutralino relic density and display the WMAP-allowed regions. We show the reach of the CERN LHC and of the International Linear Collider. We discuss aspects of MM-AMSB models for Tevatron, LHC and ILC searches, muon g-2 and b->s \gamma branching fraction. We also calculate direct and indirect dark matter detection rates, and show that almost all WMAP-allowed models should be accessible to a ton-scale noble gas detector. Finally, we comment on the potential of colliders to measure the mirage unification scale and modular weights in the difficult case where mu_mir>>M_GUT.Comment: 34 pages plus 42 EPS figures; version with high resolution figures is at http://www.hep.fsu.edu/~bae

    A Markov chain Monte Carlo analysis of the CMSSM

    Get PDF
    We perform a comprehensive exploration of the Constrained MSSM parameter space employing a Markov Chain Monte Carlo technique and a Bayesian analysis. We compute superpartner masses and other collider observables, as well as a cold dark matter abundance, and compare them with experimental data. We include uncertainties arising from theoretical approximations as well as from residual experimental errors of relevant Standard Model parameters. We delineate probability distributions of the CMSSM parameters, the collider and cosmological observables as well as a dark matter direct detection cross section. The 68% probability intervals of the CMSSM parameters are: 0.52 TeV &lt; m1/2 &lt; 1.26 TeV, m0 &lt; 2.10 TeV, -0.34 TeV &lt; A0 &lt; 2.41 TeV and 38.5 &lt; tan \u3b2 &lt; 54.6. Generally, large fractions of high probability ranges of the superpartner masses will be probed at the LHC. For example, we find that the probability of mg &lt; 2.7TeV is 78%, of mqR &lt; 2.5TeV is 85% and of m\u3c7\ub11 &lt; 0.8TeV is 65%. As regards the other observables, for example at 68% probability we find 3.5 710-9 &lt; BR(Bs \u2192 \u3bc+\u3bc-) &lt; 1.7 710-8, 1.9 710-10 &lt; \u3b4a SUSY \u3bc &lt; 9.9 710-10 and 1 7 10 -10 pb &lt; \u3c3SIp &lt; 1 7 10 -8 pb for direct WIMP detection. We highlight a complementarity between LHC and WIMP dark matter searches in exploring the CMSSM parameter space. We further expose a number of correlations among the observables, in particular between BR(Bs \u2192 \u3bc+\u3bc-) and BR(B \u2192 X s\u3b3) or \u3c3SIp. Once SUSY is discovered, this and other correlations may prove helpful in distinguishing the CMSSM from other supersymmetric models. We investigate the robustness of our results in terms of the assumed ranges of CMSSM parameters and the effect of the (g - 2)\u3bc anomaly which shows some tension with the other observables. We find that the results for m0, and the observables which strongly depend on it, are sensitive to our assumptions, while our conclusions for the other variables are robust
    corecore