2,787 research outputs found

    A gamma-ray pulsar timing array constrains the nanohertz gravitational wave background

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, los autores pertenecientes a la UAM y el nombre del grupo de colaboración, si lo hubiereLa Editorial no permite publicar la versión editorialAfter large galaxies merge, their central supermassive black holes are expected to form binary systems. Their orbital motion should generate a gravitational wave background (GWB) at nanohertz frequencies. Searches for this background use pulsar timing arrays, which perform long-term monitoring of millisecond pulsars at radio wavelengths. We used 12.5 years of Fermi Large Area Telescope data to form a gamma-ray pulsar timing array. Results from 35 bright gamma-ray pulsars place a 95% credible limit on the GWB characteristic strain of 1.0 × 10-14 at a frequency of 1 year-1. The sensitivity is expected to scale with tobs, the observing time span, as t-13/6obs. This direct measurement provides an independent probe of the GWB while offering a check on radio noise model

    A γ\gamma-ray determination of the Universe's star-formation history

    Full text link
    The light emitted by all galaxies over the history of the Universe produces the extragalactic background light (EBL) at ultraviolet, optical, and infrared wavelengths. The EBL is a source of opacity for γ\gamma rays via photon-photon interactions, leaving an imprint in the spectra of distant γ\gamma-ray sources. We measure this attenuation using {739} active galaxies and one gamma-ray burst detected by the {\it Fermi} Large Area Telescope. This allows us to reconstruct the evolution of the EBL and determine the star-formation history of the Universe over 90\% of cosmic time. Our star-formation history is consistent with independent measurements from galaxy surveys, peaking at redshift z2z\sim2. Upper limits of the EBL at the epoch of re-ionization suggest a turnover in the abundance of faint galaxies at z6z\sim 6.Comment: Published on Science. This is the authors' version of the manuscrip
    corecore