30 research outputs found

    Physiological and psychological individual differences influence resting brain function measured by ASL perfusion

    Full text link
    Effects of physiological and/or psychological inter-individual differences on the resting brain state have not been fully established. The present study investigated the effects of individual differences in basal autonomic tone and positive and negative personality dimensions on resting brain activity. Whole-brain resting cerebral perfusion images were acquired from 32 healthy subjects (16 males) using arterial spin labeling perfusion MRI. Neuroticism and extraversion were assessed with the Eysenck Personality Questionnaire-Revised. Resting autonomic activity was assessed using a validated measure of baseline cardiac vagal tone (CVT) in each individual. Potential associations between the perfusion data and individual CVT (27 subjects) and personality score (28 subjects) were tested at the level of voxel clusters by fitting a multiple regression model at each intracerebral voxel. Greater baseline perfusion in the dorsal anterior cingulate cortex (ACC) and cerebellum was associated with lower CVT. At a corrected significance threshold of p < 0.01, strong positive correlations were observed between extraversion and resting brain perfusion in the right caudate, brain stem, and cingulate gyrus. Significant negative correlations between neuroticism and regional cerebral perfusion were identified in the left amygdala, bilateral insula, ACC, and orbitofrontal cortex. These results suggest that individual autonomic tone and psychological variability influence resting brain activity in brain regions, previously shown to be associated with autonomic arousal (dorsal ACC) and personality traits (amygdala, caudate, etc.) during active task processing. The resting brain state may therefore need to be taken into account when interpreting the neurobiology of individual differences in structural and functional brain activity

    Prolonged Non-metabolic Heart Rate Variability Reduction as a Physiological Marker of Psychological Stress in Daily Life

    Get PDF
    BACKGROUND: Prolonged cardiac activity that exceeds metabolic needs can be detrimental for somatic health. Psychological stress could result in such “additional cardiac activity.” PURPOSE: In this study, we examined whether prolonged additional reductions in heart rate variability (AddHRVr) can be measured in daily life with an algorithm that filters out changes in HRV that are purely due to metabolic demand, as indexed by movement, using a brief calibration procedure. We tested whether these AddHRVr periods were related to worry, stress, and negative emotions. METHODS: Movement and the root of the mean square of successive differences (RMSSD) in heart rate were measured during a calibration phase and the subsequent 24 h in 32 participants. Worry, stress, explicit and implicit emotions were assessed hourly using smartphones. The Levels of Emotional Awareness Scale and resting HRV were used to account for individual differences. During calibration, person-specific relations between movement and RMSSD were determined. The 24-h data were used to detect prolonged periods (i.e., 7.5 min) of AddHRVr. RESULTS: AddHRVr periods were associated with worrying, with decreased explicit positive affect, and with increased tension, but not with the frequency of stressful events or implicit emotions. Only in people high in emotional awareness and high in resting HRV did changes in AddHRVr covary with changes in explicit emotions. CONCLUSIONS: The algorithm can be used to capture prolonged reductions in HRV that are not due to metabolic needs. This enables the real-time assessment of episodes of potentially detrimental cardiac activity and its psychological determinants in daily life

    Investigating the Associations of Self-Rated Health: Heart Rate Variability Is More Strongly Associated than Inflammatory and Other Frequently Used Biomarkers in a Cross Sectional Occupational Sample

    No full text
    The present study aimed to investigate the possible mechanisms linking a single-item measure of global self-rated health (SRH) with morbidity by comparing the association strengths between SRH with markers of autonomic nervous system (ANS) function, inflammation, blood glucose and blood lipids. Cross-sectional comprehensive health-check data of 3947 working adults (age 42±11) was used to calculate logistic regressions, partial correlations and compare correlation strength using Olkins Z. Adjusted logistic regression models showed a negative association between SRH (higher values indicating worse health) and measures of heart rate variability (HRV). Glycemic markers were positively associated with poor SRH. No adjusted association was found with inflammatory markers, BP or lipids. In both unadjusted and adjusted linear models Pearson's correlation strength was significantly higher between SRH with HRV measures compared to SRH with other biomarkers. This is the first study investigating the association of ANS function and SRH. We showed that a global measure of SRH is associated with HRV, and that all measures of ANS function were significantly more strongly associated with SRH than any other biomarker. The current study supports the hypothesis that the extent of brain-body communication, as indexed by HRV, is associated with self-rated health

    The Association of Work Stress and Glycemic Status Is Partially Mediated by Autonomic Nervous System Function: Cross-Sectional Results from the Mannheim Industrial Cohort Study (MICS)

    No full text
    BACKGROUND:Work stress is associated with an increased risk of pre-diabetes, Type 2 diabetes, and inflammation, as well as decreased autonomic nervous system function as measured, for example, via heart rate variability. We investigated the extent to which the association between work stress and glycemic status is mediated by vagally-mediated heart rate variability (vmHRV) and/or inflammation. METHODS:Cross-sectional data from the Mannheim Industrial Cohort Study (MICS) with 9,937 participants were analyzed. The root mean squared successive differences (RMSSD) from long-term heart rate monitoring during work and night time periods was used to index vmHRV. Fasting plasma glucose and glycosylated hemoglobin were assessed to determine glycemic status. High sensitive C-reactive protein levels were observed as a measure of systemic inflammation and the Effort-Reward-Imbalance scale was used to evaluate work stress. Mediation models were adjusted for age, sex, and occupational status, and estimations were bootstrapped (5,000 replications). RESULTS:Effort-Reward-Imbalance was significantly negatively associated with RMSSD and both glycosylated hemoglobin and fasting plasma glucose during both work and night time periods. Effort-Reward-Imbalance was observed to have a significant direct effect on glycosylated hemoglobin and significant indirect effects, through RMSSD, on both glycemic measures during both time periods. Introducing C-reactive protein as a further mediator to the model did not alter the indirect effects observed. C-reactive protein, as an exclusive mediator, was observed to have smaller direct and indirect effects on the glycemic measures as compared to when Effort-Reward-Imbalance was included in the model. CONCLUSIONS:Our results suggest that the association between work stress and glycemic status is partially mediated through vmHRV independent of systemic inflammation as measured by C-reactive protein. We conclude that work stress may be an additional factor that promotes development of hyperglycemic-metabolic states. If supported by prospective evidence, these results may lead to new approaches for primary prevention of hyperglycemia in the workplace
    corecore