24 research outputs found

    Poo Power: Revisiting Biogas Generation Potential on Dairy Farms in Texas

    Get PDF
    Biogas created from anaerobic digestion on dairy farms can be used to generate electricity, produce coproducts, and reduce reliance on off-farm inputs. We incorporate risk into simulation models representing dairy farms in Texas and demonstrate the profitability of new anaerobic digester installation. Based on this market, results indicate projects that have low investment costs, receive grant support for construction, utilize coproducts, or have some combination of these factors have higher net present value at the end of the study period; however, even with generous grant support and high electricity prices, projects with average investment costs remain unprofitable

    Estimating the Impacts of Climate Change and Potential Adaptation Strategies on Cereal Grains in the United States

    Get PDF
    Climate change induced alterations from historical patterns of precipitation, temperature, and atmospheric gases as well as increases in the frequency of extreme events is leading to alterations in global cereal production and its spatial distribution. Using a US agricultural sector model, we examine effects and acreage adaptation with an emphasis on wheat and the Pacific Northwest region. Use of a national sector model allows for analysis at the national as well as regional level. Generally, under climate change we find that the incidence of wheat production shifts northward in the Southern Great Plains, westward in Northern Great Plains and eastward in Oregon and Washington, all of which are moves to cooler conditions. Total wheat acreage in the Pacific Northwest is expected to decline from 6 million acres under no climate change to 5.4–5.7 million acres over the study period. Additionally, we consider impacts on price, production, and consumer, producer, and foreign welfare finding losses to consumer welfare and gains to producer welfare with overall losses in surplus. Recommendations are made for future research and alternative ways that adaptation strategies can be integrated into models to predict long-term impacts

    The Challenge of Climate Change Adaptation for Agriculture: an Economically Oriented Review

    Get PDF
    Climate change is occurring. Deviations from historic temperatures and precipitation plus increased frequency of extreme events are modifying agriculture systems globally. Adapting agricultural management practices offers a way to lessen the effects or exploit opportunities. Herein many aspects of the adaptation issue are discussed, including needs, strategies, observed actions, benefits, economic analysis approaches, role of public/private actors, limits, and project evaluation. We comment on the benefits and shortcomings of analytical methods and suggested economic efforts. Economists need to play a role in such diverse matters as projecting adaptation needs, designing adaptation incentives, and evaluating projects to ensure efficiency and effectiveness

    Disconnect within Agriculture and Ecosystem Climate Effects, Adaptations and Policy

    Get PDF
    Frequently, agriculture and ecosystems (AE) are seen as separate entities, causing entity specific solutions in response to threats. Anthropogenic climate change simultaneously stresses both agriculture and ecosystems along with their interactions. Induced increasing surface temperatures [1], altered precipitation [2], drought intensification [3], altered ground and surface water quantity/quality [4,5], and diminished soil moisture [6] force adaptations for AE, but these adaptations fail to be efficient when interdependencies are not considered. Additional adaptations will be necessary, as future projections anticipate even greater climate change [1]

    Integrating Agriculture and Ecosystems to Find Suitable Adaptations to Climate Change

    Get PDF
    Climate change is altering agricultural production and ecosystems around the world. Future projections indicate that additional change is expected in the coming decades, forcing individuals and communities to respond and adapt. Current research efforts typically examine climate change effects and possible adaptations but fail to integrate agriculture and ecosystems. This failure to jointly consider these systems and associated externalities may underestimate climate change impacts or cause adaptation implementation surprises, such as causing adaptation status of some groups or ecosystems to be worsened. This work describes and motivates reasons why ecosystems and agriculture adaptation require an integrated analytical approach. Synthesis of current literature and examples from Texas are used to explain concepts and current challenges. Texas is chosen because of its high agricultural output that is produced in close interrelationship with the surrounding semi-arid ecosystem. We conclude that future effect and adaptation analyses would be wise to jointly consider ecosystems and agriculture. Existing paradigms and useful methodology can be transplanted from the sustainable agriculture and ecosystem service literature to explore alternatives for climate adaptation and incentivization of private agriculturalists and consumers. Researchers are encouraged to adopt integrated modeling as a means to avoid implementation challenges and surprises when formulating and implementing adaptation

    Preparing the Next Generation of Sustainability Scientists

    Get PDF
    Graduate programs emerging in universities over recent decades support the advanced study of sustainability issues in complex socio-environmental systems. Constructing the problem-scope to address these issues requires graduate students to integrate across disciplines and synthesize the social and natural dimensions of sustainability. Graduate programs that are designed to foster inter- and transdisciplinary research acknowledge the importance of training students to use integrative research approaches. However, this training is not available in all graduate programs that support integrative research, often requiring students to seek external training opportunities. We present perspectives from a group of doctoral students with diverse disciplinary backgrounds conducting integrative research in universities across the United States who participated in a 10-day, National Science Foundation-funded integrative research training workshop to learn and develop socio-environmental research skills. Following the workshop, students conducted a collaborative autoethnographic study to share pre- and postworkshop research experiences and discuss ways to increase integrative research training opportunities. Results reveal that students, regardless of disciplinary background, face common barriers conducting integrative research that include: (1) lack of exposure to epistemological frameworks and team-science skills, (2) challenges to effectively include stakeholder perspectives in his/her research, and (3) variable levels of committee support to conduct integrative research. To overcome the identified barriers and advance integrative research, students recommend how training opportunities can be embedded within existing graduate programs. Students advocate that both internal and external training opportunities are necessary to support the next generation of sustainability scientists

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Coordinating Class Projects in Graduate Courses: Double the Work or a Double Dip?

    No full text
    In an attempt to enhance student learning and promote graduate student publishing, faculty co-created and deployed a coordinated cross class project in their graduate classes. This project integrated course objectives and provided an opportunity for students to answer a complex, real-world question. This presentation will provide participants insight into the motivations, challenges, benefits, and strategies learned to through this process and the potential opportunities for future assignments
    corecore