132 research outputs found

    3D printing of gas jet nozzles for laser-plasma accelerators

    Full text link
    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular it was reported that appropriate density tailoring can result in improved injection, acceleration and collimation of laser-accelerated electron beams. To achieve such profiles innovative target designs are required. For this purpose we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling (FDM) to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the Salle Jaune terawatt laser at Laboratoire d'Optique Appliqu\'ee

    Comment on “Transition to the Relativistic Regime in High Order Harmonic Generation”

    Get PDF
    International audienceIn [Phys. Rev. Lett. 98, 103902 (2007)], Tarasevitch et al. demonstrate the existence of two generation mechanisms for laser high-order harmonicsfrom overdense plasmas. One of these mechanisms leads to harmonics with frequencies up to the maximum plasmafrequency of the target and occurs even at nonrelativistic laser intensities. We show that the mechanism responsiblefor these harmonics is coherent wake emission (CWE), a process that significantly differs from thequalitative model proposed by these authors, and it leads toa different interpretation of several essential features of this emission

    Regimes of expansion of a collisional plasma into a vacuum

    No full text
    International audienceThe effect of elastic Coulomb collisions on the one-dimensional expansion of a plasma slab is studied in the classical limit, using an electrostatic particle-in-cell code. Two regimes of interest are identified. For a collision rate of few hundreds of the inverse of the expansion characteristic time τe \tau_e the electron distribution function remains isotropic and Maxwellian with a homogeneous temperature, during all the expansion. In this case, the expansion can be approached by a three-dimensional version of the hybrid model developed by Mora [P. Mora, Phys. Rev. E 72, 056401 2005]. When the collision rate becomes somewhat greater than 104τe−110^4 \tau_e^{-1} the plasma is divided in two parts: an inner part which expands adiabatically as an ideal gas and an outer part which undergoes an isothermal expansion

    Angular momentum evolution in laser-plasma accelerators

    Get PDF
    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extend in the phase space and the angular momentum which allows for non-planar electron trajectories. Whereas the emittance of electron beams produced in laser- plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular momentum growth and we present experimental results showing that the angular momentum content evolves during the acceleration

    Phase Properties of Laser High-Order Harmonics Generated on Plasma Mirrors

    Get PDF
    International audienceAs a high-intensity laser-pulse reflects on a plasma mirror, high-order harmonics of the incident frequency can be generated in the reflected beam. We present a numerical study of the phase properties of these individual harmonics, and demonstrate experimentally that they can be coherently controlled through the phase of the driving laser field. The harmonic intrinsic phase, resulting from the generation process, is directly related to the coherent sub-laser-cycle dynamics of plasma electrons, and thus constitutes a new experimental probe of these dynamics

    Betatron emission as a diagnostic for injection and acceleration mechanisms in laser-plasma accelerators

    Full text link
    Betatron x-ray emission in laser-plasma accelerators is a promising compact source that may be an alternative to conventional x-ray sources, based on large scale machines. In addition to its potential as a source, precise measurements of betatron emission can reveal crucial information about relativistic laser-plasma interaction. We show that the emission length and the position of the x-ray emission can be obtained by placing an aperture mask close to the source, and by measuring the beam profile of the betatron x-ray radiation far from the aperture mask. The position of the x-ray emission gives information on plasma wave breaking and hence on the laser non-linear propagation. Moreover, the measurement of the longitudinal extension helps one to determine whether the acceleration is limited by pump depletion or dephasing effects. In the case of multiple injections, it is used to retrieve unambiguously the position in the plasma of each injection. This technique is also used to study how, in a capillary discharge, the variations of the delay between the discharge and the laser pulse affect the interaction. The study reveals that, for a delay appropriate for laser guiding, the x-ray emission only occurs in the second half of the capillary: no electrons are injected and accelerated in the first half.Comment: 8 pages, 6 figures. arXiv admin note: text overlap with arXiv:1104.245

    Coherent Wake Emission of High-Order Harmonics from Overdense Plasmas

    Get PDF
    International audienc

    A bremsstrahlung gamma-ray source based on stable ionization injection of electrons into a laser wakefield accelerator

    Get PDF
    Laser wakefield acceleration permits the generation of ultra-short, high-brightness relativistic electron beams on a millimeter scale. While those features are of interest for many applications, the source remains constraint by the poor stability of the electron injection process. Here we present results on injection and acceleration of electrons in pure nitrogen and argon. We observe stable, continuous ionization-induced injection of electrons into the wakefield for laser powers exceeding a threshold of 7 TW. The beam charge scales approximately linear with the laser energy and is limited by beam loading. For 40 TW laser pulses we measure a maximum charge of almost 1 nC per shot, originating mostly from electrons of less than 10 MeV energy. The relatively low energy, the high charge and its stability make this source well-suited for applications such as non-destructive testing. Hence, we demonstrate the production of energetic radiation via bremsstrahlung conversion at 1 Hz repetition rate. In accordance with Geant4 Monte-Carlo simulations, we measure a gamma-ray source size of less than 100 microns for a 0.5 mm tantalum converter placed at 2 mm from the accelerator exit. Furthermore we present radiographs of image quality indicators
    • 

    corecore