755 research outputs found

    Rate-Splitting Robustness in Multi-Pair Massive MIMO Relay Systems

    Get PDF
    Relay systems improve both coverage and system capacity. Toward this direction, a full-duplex (FD) technology, being able to boost the spectral efficiency by transmitting and receiving simultaneously on the same frequency and time resources, is envisaged to play a key role in future networks. However, its benefits come at the expense of self-interference (SI) from their own transmit signal. At the same time, massive multiple-input massive multiple-output systems, bringing unconventionally many antennas, emerge as a promising technology with huge degrees-of-freedom. To this end, this paper considers a multi-pair decode-and-forward FD relay channel, where the relay station is deployed with a large number of antennas. Moreover, the rate-splitting (RS) transmission has recently been shown to provide significant performance benefits in various multi-user scenarios with imperfect channel state information at the transmitter (CSIT). Engaging the RS approach, we employ the deterministic equivalent analysis to derive the corresponding sum-rates in the presence of interferences. Initially, numerical results demonstrate the robustness of RS in half-duplex (HD) systems, since the achievable sum-rate increases without bound, i.e., it does not saturate at high signal-to-noise ratio. Next, we tackle the detrimental effect of SI in FD. In particular, and most importantly, not only FD outperforms HD, but also RS enables increasing the range of SI over which FD outperforms HD. Furthermore, increasing the number of relay station antennas, RS appears to be more efficacious due to imperfect CSIT, since SI decreases. Interestingly, increasing the number of users, the efficiency of RS worsens and its implementation becomes less favorable under these conditions. Finally, we verify that the proposed DEs, being accurate for a large number of relay station antennas, are tight approximations even for realistic system dimensions.Peer reviewedFinal Accepted Versio

    Multi-user Communication in Difficult Interference

    Full text link
    The co-channel interference (CCI) is one of the major impairments in wireless communication. CCI typically reduces the reliability of wireless communication links, but the difficult CCI which is no more or less strong to the desired signals destroys wireless links despite having myriad of CCI mitigation methods. It is shown in this paper that M-QAM (Quadrature Amplitude Modulation) or similar modulation schemes which modulate information both in in-phase and quadrature-phase are particularly vulnerable to difficult CCI. Despite well-known shortcomings, it is shown in this paper that M-PAM or similar schemes that use a single dimension for modulation provides an important mean for difficult CCI mitigation.Comment: 4 pages, 2 figs and accepted in IEEE ICASSP 2019, Brighton, U

    Nuts and Bolts of a Realistic Stochastic Geometric Analysis of mmWave HetNets: Hardware Impairments and Channel Aging

    Get PDF
    © 2019 IEEE.Motivated by heterogeneous network (HetNet) design in improving coverage and by millimeter-wave (mmWave) transmission offering an abundance of extra spectrum, we present a general analytical framework shedding light on the downlink of realistic mmWave HetNets consisting of K tiers of randomly located base stations. Specifically, we model, by virtue of stochastic geometry tools, the multi-Tier multi-user (MU) multiple-input multiple-output (MIMO) mmWave network degraded by the inevitable residual additive transceiver hardware impairments (RATHIs) and channel aging. Given this setting, we derive the coverage probability and the area spectral efficiency (ASE), and we subsequently evaluate the impact of residual transceiver hardware impairments and channel aging on these metrics. Different path-loss laws for line-of-sight and non-line-of-sight are accounted for the analysis, which are among the distinguishing features of mmWave systems. Among the findings, we show that the RATHIs have a meaningful impact at the high-signal-To-noise-ratio regime, while the transmit additive distortion degrades further than the receive distortion the system performance. Moreover, serving fewer users proves to be preferable, and the more directive the mmWaves are, the higher the ASE becomes.Peer reviewedFinal Accepted Versio

    Making Space a Home: Role of Homeland-Based Cultural Practices in Homemaking of Tamils and Somalis in Norway

    Get PDF
    This article looks at the relationship between homeland-based cultural practices and the homemaking process of first-generation members of the Tamil and Somali diaspora communities in Norway. There are around 13000 Tamils and 25000 Somalis currently living in Norway, adopting practices and habits that are culturally rooted in the lifestyle of their country of origin. This article does not see country-of-origin orientation and home in Norway as opposites, but rather as complementary processes. Thus, this article argues that homeland-based cultural practices of Tamils and Somalis are part of their homemaking in Norway to establish a space of comfort. The main empirical base of the paper is grounded in 40 interviews of first-generation immigrants, 25 of Tamils and 15 of Somalis
    • …
    corecore