7 research outputs found
Safe and just Earth system boundaries.
This is the final version. Available from Nature Research via the DOI in this record. Data availability
The data supporting Figs. 2 and 3 are available at https://doi.org/10.6084/m9.figshare.22047263.v2 and https://doi.org/10.6084/m9.figshare.20079200.v2, respectively. We rely on other published datasets for the climate boundary16, N boundary72 (model files are at https://doi.org/10.5281/zenodo.6395016), phosphorus73,74 (scenario breakdowns are at https://ora.ox.ac.uk/objects/uuid:d9676f6b-abba-48fd-8d94-cc8c0dc546a2, and a summary of agricultural sustainability indicators is at https://doi.org/10.5281/zenodo.5234594), current N surpluses129,130 (the repository at https://dataportaal.pbl.nl/downloads/IMAGE/GNM) with the critical N surplus limit72 subtracted, and estimated subglobal P concentration in runoff based on estimated P load to freshwater131 and local runoff data132,133. Current functional integrity is calculated from the European Space Agency WorldCover 10-metre-resolution land cover map (https://esa-worldcover.org/en). The safe boundary and current state for groundwater are derived from the Gravity Recovery And Climate Experiment (http://www2.csr.utexas.edu/grace/RL06_mascons.html) and the Global Land Data Assimilation System (https://disc.gsfc.nasa.gov/datacollection/GLDAS_NOAH025_3H_2.1.html). More information is available in ‘Code availability’ and Supplementary Methods. Source data for Fig. 2 are provided with this paper.Code availability:
The code used to produce Figs. 2 and 3 are available at https://doi.org/10.6084/m9.figshare.22047263.v2 and https://doi.org/10.6084/m9.figshare.20079200.v2, respectively. The code used to make the nutrient Earth system boundary layers in Fig. 3 is available at https://doi.org/10.5281/zenodo.7636716. The code used to make the surface water layer in Fig. 3 and derive the subglobal Earth system boundaries for surface water is available at https://doi.org/10.5281/zenodo.7674802. The code to estimate current functional integrity is available at https://figshare.com/articles/software/integrity_analysis/22232749/2. The code to derive the groundwater layer in Fig. 3 and derive the total annual groundwater recharge is available at https://doi.org/10.5281/zenodo.7710540.The stability and resilience of the Earth system and human well-being are inseparably linked1-3, yet their interdependencies are generally under-recognized; consequently, they are often treated independently4,5. Here, we use modelling and literature assessment to quantify safe and just Earth system boundaries (ESBs) for climate, the biosphere, water and nutrient cycles, and aerosols at global and subglobal scales. We propose ESBs for maintaining the resilience and stability of the Earth system (safe ESBs) and minimizing exposure to significant harm to humans from Earth system change (a necessary but not sufficient condition for justice)4. The stricter of the safe or just boundaries sets the integrated safe and just ESB. Our findings show that justice considerations constrain the integrated ESBs more than safety considerations for climate and atmospheric aerosol loading. Seven of eight globally quantified safe and just ESBs and at least two regional safe and just ESBs in over half of global land area are already exceeded. We propose that our assessment provides a quantitative foundation for safeguarding the global commons for all people now and into the future.Stockholm Universit
A just world on a safe planet: a Lancet Planetary Health–Earth Commission report on Earth-system boundaries, translations, and transformations
The health of the planet and its people are at risk. The deterioration of the global commons—ie, the natural systems that support life on Earth—is exacerbating energy, food, and water insecurity, and increasing the risk of disease, disaster, displacement, and conflict. In this Commission, we quantify safe and just Earth-system boundaries (ESBs) and assess minimum access to natural resources required for human dignity and to enable escape from poverty. Collectively, these describe a safe and just corridor that is essential to ensuring sustainable and resilient human and planetary health and thriving in the Anthropocene. We then discuss the need for translation of ESBs across scales to inform science-based targets for action by key actors (and the challenges in doing so), and conclude by identifying the system transformations necessary to bring about a safe and just future.
Our concept of the safe and just corridor advances research on planetary boundaries and the justice and Earth-system aspects of the Sustainable Development Goals. We define safe as ensuring the biophysical stability of the Earth system, and our justice principles include minimising harm, meeting minimum access needs, and redistributing resources and responsibilities to enhance human health and wellbeing. The ceiling of the safe and just corridor is defined by the more stringent of the safe and just ESBs to minimise significant harm and ensure Earth-system stability. The base of the corridor is defined by the impacts of minimum global access to food, water, energy, and infrastructure for the global population, in the domains of the variables for which we defined the ESBs. Living within the corridor is necessary, because exceeding the ESBs and not meeting basic needs threatens human health and life on Earth. However, simply staying within the corridor does not guarantee justice because within the corridor resources can also be inequitably distributed, aggravating human health and causing environmental damage. Procedural and substantive justice are necessary to ensure that the space within the corridor is justly shared.
We define eight safe and just ESBs for five domains—the biosphere (functional integrity and natural ecosystem area), climate, nutrient cycles (phosphorus and nitrogen), freshwater (surface and groundwater), and aerosols—to reduce the risk of degrading biophysical life-support systems and avoid tipping points. Seven of the ESBs have already been transgressed: functional integrity, natural ecosystem area, climate, phosphorus, nitrogen, surface water, and groundwater. The eighth ESB, air pollution, has been transgressed at the local level in many parts of the world. Although safe boundaries would ensure Earth-system stability and thus safeguard the overall biophysical conditions that have enabled humans to flourish, they do not necessarily safeguard everyone against harm or allow for minimum access to resources for all. We use the concept of Earth-system justice—which seeks to ensure wellbeing and reduce harm within and across generations, nations, and communities, and between humans and other species, through procedural and distributive justice—to assess safe boundaries. Earth-system justice recognises unequal responsibility for, and unequal exposure and vulnerability to, Earth-system changes, and also recognises unequal capacities to respond and unequal access to resources.
We also assess the extent to which safe ESBs could minimise irreversible, existential, and other major harms to human health and wellbeing through a review of who is affected at each boundary. Not all safe ESBs are just, in that they do not minimise all significant harm (eg, that associated with the climate change, aerosol, or nitrogen ESBs). Billions of people globally do not have sufficient access to energy, clean water, food, and other resources. For climate change, for example, tens of millions of people are harmed at lower levels of warming than that defined in the safe ESB, and thus to avoid significant harm would require a more stringent ESB. In other domains, the safe ESBs align with the just ESBs, although some need to be modified, or complemented with local standards, to prevent significant harm (eg, the aerosols ESB).
We examine the implications of achieving the social SDGs in 2018 through an impact modelling exercise, and quantify the minimum access to resources required for basic human dignity (level 1) as well as the minimum resources required to enable escape from poverty (level 2). We conclude that without social transformation and redistribution of natural resource use (eg, from top consumers of natural resources to those who currently do not have minimum access to these resources), meeting minimum-access levels for people living below the minimum level would increase pressures on the Earth system and the risks of further transgressions of the ESBs.
We also estimate resource-access needs for human populations in 2050 and the associated Earth-system impacts these could have. We project that the safe and just climate ESB will be overshot by 2050, even if everybody in the world lives with only the minimum required access to resources (no more, no less), unless there are transformations of, for example, the energy and food systems. Thus, a safe and just corridor will only be possible with radical societal transformations and technological changes.
Living within the safe and just corridor requires operationalisation of ESBs by key actors across all levels, which can be achieved via cross-scale translation (whereby resources and responsibilities for impact reductions are equitably shared among actors). We focus on cities and businesses because of the magnitude of their impacts on the Earth system, and their potential to take swift action and act as agents of change. We explore possible approaches for translating each ESB to cities and businesses via the sequential steps of transcription, allocation, and adjustment. We highlight how different elements of Earth-system justice can be reflected in the allocation and adjustment steps by choosing appropriate sharing approaches, informed by the governance context and broader enabling conditions.
Finally we discuss system transformations that could move humanity into a safe and just corridor and reduce risks of instability, injustice, and harm to human health. These transformations aim to minimise harm and ensure access to essential resources, while addressing the drivers of Earth-system change and vulnerability and the institutional and social barriers to systemic transformations, and include reducing and reallocating consumption, changing economic systems, technology, and governance
Influence of Last Glacial Maximum boundary conditions on the global water isotope distribution in an atmospheric general circulation model
To understand the validity of δ<sup>18</sup>O proxy records as indicators of past temperature change, a series of experiments was conducted using an atmospheric general circulation model fitted with water isotope tracers (Community Atmosphere Model version 3.0, IsoCAM). A pre-industrial simulation was performed as the control experiment, as well as a simulation with all the boundary conditions set to Last Glacial Maximum (LGM) values. Results from the pre-industrial and LGM simulations were compared to experiments in which the influence of individual boundary conditions (greenhouse gases, ice sheet albedo and topography, sea surface temperature (SST), and orbital parameters) were changed each at a time to assess their individual impact. The experiments were designed in order to analyze the spatial variations of the oxygen isotopic composition of precipitation (δ<sup>18</sup>O<sub>precip</sub>) in response to individual climate factors. The change in topography (due to the change in land ice cover) played a significant role in reducing the surface temperature and δ<sup>18</sup>O<sub>precip</sub> over North America. Exposed shelf areas and the ice sheet albedo reduced the Northern Hemisphere surface temperature and δ<sup>18</sup>O<sub>precip</sub> further. A global mean cooling of 4.1 °C was simulated with combined LGM boundary conditions compared to the control simulation, which was in agreement with previous experiments using the fully coupled Community Climate System Model (CCSM3). Large reductions in δ<sup>18</sup>O<sub>precip</sub> over the LGM ice sheets were strongly linked to the temperature decrease over them. The SST and ice sheet topography changes were responsible for most of the changes in the climate and hence the δ<sup>18</sup>O<sub>precip</sub> distribution among the simulations