140 research outputs found

    Exact and Asymptotic Measures of Multipartite Pure State Entanglement

    Full text link
    In an effort to simplify the classification of pure entangled states of multi (m) -partite quantum systems, we study exactly and asymptotically (in n) reversible transformations among n'th tensor powers of such states (ie n copies of the state shared among the same m parties) under local quantum operations and classical communication (LOCC). With regard to exact transformations, we show that two states whose 1-party entropies agree are either locally-unitarily (LU) equivalent or else LOCC-incomparable. In particular we show that two tripartite Greenberger-Horne-Zeilinger (GHZ) states are LOCC-incomparable to three bipartite Einstein-Podolsky-Rosen (EPR) states symmetrically shared among the three parties. Asymptotic transformations result in a simpler classification than exact transformations. We show that m-partite pure states having an m-way Schmidt decomposition are simply parameterizable, with the partial entropy across any nontrivial partition representing the number of standard ``Cat'' states (|0^m>+|1^m>) asymptotically interconvertible to the state in question. For general m-partite states, partial entropies across different partitions need not be equal, and since partial entropies are conserved by asymptotically reversible LOCC operations, a multicomponent entanglement measure is needed, with each scalar component representing a different kind of entanglement, not asymptotically interconvertible to the other kinds. In particular the m=4 Cat state is not isentropic to, and therefore not asymptotically interconvertible to, any combination of bipartite and tripartite states shared among the four parties. Thus, although the m=4 cat state can be prepared from bipartite EPR states, the preparation process is necessarily irreversible, and remains so even asymptotically.Comment: 13 pages including 3 PostScript figures. v3 has updated references and discussion, to appear Phys. Rev.

    Perfect initialization of a quantum computer of neutral atoms in an optical lattice of large lattice constant

    Get PDF
    We propose a scheme for the initialization of a quantum computer based on neutral atoms trapped in an optical lattice with large lattice constant. Our focus is the development of a compacting scheme to prepare a perfect optical lattice of simple orthorhombic structure with unit occupancy. Compacting is accomplished by sequential application of two types of operations: a flip operator that changes the internal state of the atoms, and a shift operator that moves them along the lattice principal axis. We propose physical mechanisms for realization of these operations and we study the effects of motional heating of the atoms. We carry out an analysis of the complexity of the compacting scheme and show that it scales linearly with the number of lattice sites per row of the lattice, thus showing good scaling behavior with the size of the quantum computer.Comment: 18 page

    Local symmetry properties of pure 3-qubit states

    Get PDF
    Entanglement types of pure states of 3 qubits are classified by means of their stabilisers in the group of local unitary operations. It is shown that the stabiliser is generically discrete, and that a larger stabiliser indicates a stationary value for some local invariant. We describe all the exceptional states with enlarged stabilisers.Comment: 32 pages, 5 encapsulated PostScript files for 3 figures. Published version, with minor correction

    Entanglement molecules

    Get PDF
    We investigate the entanglement properties of multiparticle systems, concentrating on the case where the entanglement is robust against disposal of particles. Two qubits -belonging to a multipartite system- are entangled in this sense iff their reduced density matrix is entangled. We introduce a family of multiqubit states, for which one can choose for any pair of qubits independently whether they should be entangled or not as well as the relative strength of the entanglement, thus providing the possibility to construct all kinds of ''Entanglement molecules''. For some particular configurations, we also give the maximal amount of entanglement achievable.Comment: 4 pages, 1 figur

    Generalized Schmidt decomposition and classification of three-quantum-bit states

    Get PDF
    We prove for any pure three-quantum-bit state the existence of local bases which allow to build a set of five orthogonal product states in terms of which the state can be written in a unique form. This leads to a canonical form which generalizes the two-quantum-bit Schmidt decomposition. It is uniquely characterized by the five entanglement parameters. It leads to a complete classification of the three-quantum-bit states. It shows that the right outcome of an adequate local measurement always erases all entanglement between the other two parties.Comment: 4 pages, Revtex. Published version, minor changes and new references adde
    corecore