167 research outputs found

    Redox mechanisms in age-related lung fibrosis

    Get PDF
    AbstractRedox signaling and oxidative stress are associated with tissue fibrosis and aging. Aging is recognized as a major risk factor for fibrotic diseases involving multiple organ systems, including that of the lung. A number of oxidant generating enzymes are upregulated while antioxidant defenses are deficient with aging and cellular senescence, leading to redox imbalance and oxidative stress. However, the precise mechanisms by which redox signaling and oxidative stress contribute to the pathogenesis of lung fibrosis are not well understood. Tissue repair is a highly regulated process that involves the interactions of several cell types, including epithelial cells, fibroblasts and inflammatory cells. Fibrosis may develop when these interactions are dysregulated with the acquisition of pro-fibrotic cellular phenotypes. In this review, we explore the roles of redox mechanisms that promote and perpetuate fibrosis in the context of cellular senescence and aging

    Mechanisms of pulmonary fibrosis: role of activated myofibroblasts and NADPH oxidase

    Get PDF
    A common feature of pathological fibrosis involving the lung and other organs is the persistent activation of myofibroblasts in injured tissues. Recent evidence supports the role of a member of the NADPH oxidase (NOX) gene family, NOX4, in myofibroblast differentiation, matrix synthesis and contractility. Additionally, NOX4 may contribute directly or indirectly to alveolar epithelial cell death, while myofibroblasts themselves acquire an apoptosis-resistant phenotype. Thus, NOX4 may be responsible for the cardinal features of progressive fibrosis - myofibroblast activation and epithelial cell dysrepair. Therapeutic targeting of NOX4 is likely to be effective in progressive cases of fibrosis involving multiple organs

    Pathogenetic mechanisms in usual interstitial pneumonia/idiopathic pulmonary fibrosis

    Full text link
    Idiopathic pulmonary fibrosis (IPF) is a progressive, usually fatal, form of interstitial lung disease characterized by failure of alveolar re-epithelialization, persistence of fibroblasts/myofibroblasts, deposition of extracellular matrix, and distortion of lung architecture which ultimately results in respiratory failure. Clinical IPF is associated with a histopathological pattern of usual interstitial pneumonia (UIP) on surgical lung biopsy. Therapy for this disease with glucocorticoids and other immunomodulatory agents is largely ineffective and recent trials of newer anti-fibrotic agents have been disappointing. While the inciting event(s) leading to the initiation of scar formation in UIP remain unknown, recent advances in our understanding of the mechanisms underlying both normal and aberrant wound healing have shed some light on pathogenetic mechanisms that may play significant roles in this disease. Unlike other fibrotic diseases of the lung, such as those associated with collagen vascular disease, occupational exposure, or chemotherapeutic agents, UIP is not associated with a significant inflammatory response; rather, dysregulated epithelial–mesenchymal interactions predominate. Identification of pathways crucial to fibrogenesis might offer potentially novel therapeutic targets to slow or halt the progression of IPF. This review focuses on evolving concepts of cellular and molecular mechanisms in the pathogenesis of UIP/IPF. Copyright © 2003 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34486/1/1446_ftp.pd

    Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts

    Full text link
    Cell‐cell signaling roles for reactive oxygen species (ROS) generated in response to growth factors/cytokines in nonphagocytic cells are not well defined. In this study, we show that fibroblasts isolated from lungs of patients with idiopathic pulmonary fibrosis (IPF) generate extracellular hydrogen peroxide (H2O2) in response to the multifunctional cytokine, transforming growth factor‐β1 (TGF‐β1). In contrast, TGF‐β1 stimulation of small airway epithelial cells (SAECs) does not result in detectable levels of extracellular H2O2. IPF fibroblasts independently stimulated with TGF‐β1 induce loss of viability and death of overlying SAECs when cocultured in a compartmentalized Transwell system. These effects on SAECs are inhibited by the addition of catalase to the coculture system or by the selective enzymatic blockade of H2O2 production by IPF fibroblasts. IPF fibroblasts heterogeneously express α‐smooth muscle actin stress fibers, a marker of myofibroblast differentiation. Cellular localization of H2O2 by a fluorescent‐labeling strategy demonstrated that extracellular secretion of H2O2 is specific to the myofibroblast phenotype. Thus, myofibroblast secretion of H2O2 functions as a diffusible death signal for lung epithelial cells. This novel mechanism for intercellular ROS signaling may be important in physiological/pathophysiological processes characterized by regenerating epithelial cells and activated myofibroblasts.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154383/1/fsb2fj042882fje.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154383/2/fsb2fj042882fje-sup-0001.pd

    Fgf10 Signaling in Lung Development, Homeostasis, Disease, and Repair After Injury

    Get PDF
    The lung is morphologically structured into a complex tree-like network with branched airways ending distally in a large number of alveoli for efficient oxygen exchange. At the cellular level, the adult lung consists of at least 40–60 different cell types which can be broadly classified into epithelial, endothelial, mesenchymal, and immune cells. Fibroblast growth factor 10 (Fgf10) located in the lung mesenchyme is essential to regulate epithelial proliferation and lineage commitment during embryonic development and post-natal life, and to drive epithelial regeneration after injury. The cells that express Fgf10 in the mesenchyme are progenitors for mesenchymal cell lineages during embryonic development. During adult lung homeostasis, Fgf10 is expressed in mesenchymal stromal niches, between cartilage rings in the upper conducting airways where basal cells normally reside, and in the lipofibroblasts adjacent to alveolar type 2 cells. Fgf10 protects and promotes lung epithelial regeneration after different types of lung injuries. An Fgf10-Hippo epithelial-mesenchymal crosstalk ensures maintenance of stemness and quiescence during homeostasis and basal stem cell (BSC) recruitment to further promote regeneration in response to injury. Fgf10 signaling is dysregulated in different human lung diseases including bronchopulmonary dysplasia (BPD), idiopathic pulmonary fibrosis (IPF), and chronic obstructive pulmonary disease (COPD), suggesting that dysregulation of the FGF10 pathway is critical to the pathogenesis of several human lung diseases

    Role of Nox4 and Nox2 in Hyperoxia-Induced Reactive Oxygen Species Generation and Migration of Human Lung Endothelial Cells

    Full text link
    Abstract In vascular endothelium, the major research focus has been on reactive oxygen species (ROS) derived from Nox2. The role of Nox4 in endothelial signal transduction, ROS production, and cytoskeletal reorganization is not well defined. In this study, we show that human pulmonary artery endothelial cells (HPAECs) and human lung microvascular endothelial cells (HLMVECs) express higher levels of Nox4 and p22phox compared to Nox1, Nox2, Nox3, or Nox5. Immunofluorescence microscopy and Western blot analysis revealed that Nox4 and p22phox, but not Nox2 or p47phox, are localized in nuclei of HPAECs. Further, knockdown of Nox4 with siRNA decreased Nox4 nuclear expression significantly. Exposure of HPAECs to hyperoxia (3-24h) enhanced mRNA and protein expression of Nox4, and Nox4 siRNA decreased hyperoxia-induced ROS production. Interestingly, Nox4 or Nox2 knockdown with siRNA upregulated the mRNA and protein expression of the other, suggesting activation of compensatory mechanisms. A similar upregulation of Nox4 mRNA was observed in Nox2 2/ko mice. Downregulation of Nox4, or pretreatment with N-acetylcysteine, attenuated hyperoxia-induced cell migration and capillary tube formation, suggesting that ROS generated by Nox4 regulate endothelial cell motility. These results indicate that Nox4 and Nox2 play a physiological role in hyperoxia-induced ROS production and migration of ECs. Antioxid. Redox Signal. 11, 747-764.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78121/1/ars.2008.2203.pd

    Heme metabolism genes Downregulated in COPD Cachexia.

    Get PDF
    IntroductionCachexia contributes to increased mortality and reduced quality of life in Chronic Obstructive Pulmonary Disease (COPD) and may be associated with underlying gene expression changes. Our goal was to identify differential gene expression signatures associated with COPD cachexia in current and former smokers.MethodsWe analyzed whole-blood gene expression data from participants with COPD in a discovery cohort (COPDGene, N = 400) and assessed replication (ECLIPSE, N = 114). To approximate the consensus definition using available criteria, cachexia was defined as weight-loss > 5% in the past 12 months or low body mass index (BMI) (< 20 kg/m2) and 1/3 criteria: decreased muscle strength (six-minute walk distance < 350 m), anemia (hemoglobin < 12 g/dl), and low fat-free mass index (FFMI) (< 15 kg/m2 among women and < 17 kg/m2 among men) in COPDGene. In ECLIPSE, cachexia was defined as weight-loss > 5% in the past 12 months or low BMI and 3/5 criteria: decreased muscle strength, anorexia, abnormal biochemistry (anemia or high c-reactive protein (> 5 mg/l)), fatigue, and low FFMI. Differential gene expression was assessed between cachectic and non-cachectic subjects, adjusting for age, sex, white blood cell counts, and technical covariates. Gene set enrichment analysis was performed using MSigDB.ResultsThe prevalence of COPD cachexia was 13.7% in COPDGene and 7.9% in ECLIPSE. Fourteen genes were differentially downregulated in cachectic versus non-cachectic COPD patients in COPDGene (FDR < 0.05) and ECLIPSE (FDR < 0.05).DiscussionSeveral replicated genes regulating heme metabolism were downregulated among participants with COPD cachexia. Impaired heme biosynthesis may contribute to cachexia development through free-iron buildup and oxidative tissue damage

    NOX Enzymes and Pulmonary Disease

    Full text link
    Abstract The primary function of the lung is to facilitate the transfer of molecular oxygen (O2; dioxygen) from the atmosphere to the systemic circulation. In addition to its essential role in aerobic metabolism, O2 serves as the physiologic terminal acceptor of electron transfer catalyzed by the NADPH oxidase (NOX) family of oxidoreductases. The evolution of the lungs and circulatory systems in vertebrates was accompanied by increasing diversification of NOX family enzymes, suggesting adaptive roles for NOX-derived reactive oxygen species in normal physiology. However, this adaptation may paradoxically carry detrimental consequences in the setting of overwhelming/persistent environmental stressors, both infectious and noninfectious, and during the process of aging. Here, we review current understanding of NOX enzymes in normal lung physiology and their pathophysiologic roles in a number of pulmonary diseases, including lung infections, acute lung injury, pulmonary arterial hypertension, obstructive lung disorders, fibrotic lung disease, and lung cancer. Antioxid. Redox Signal. 11, 2505-2516.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78108/1/ars.2009.2599.pd
    corecore