1,844 research outputs found

    Redox mechanisms in age-related lung fibrosis

    Get PDF
    AbstractRedox signaling and oxidative stress are associated with tissue fibrosis and aging. Aging is recognized as a major risk factor for fibrotic diseases involving multiple organ systems, including that of the lung. A number of oxidant generating enzymes are upregulated while antioxidant defenses are deficient with aging and cellular senescence, leading to redox imbalance and oxidative stress. However, the precise mechanisms by which redox signaling and oxidative stress contribute to the pathogenesis of lung fibrosis are not well understood. Tissue repair is a highly regulated process that involves the interactions of several cell types, including epithelial cells, fibroblasts and inflammatory cells. Fibrosis may develop when these interactions are dysregulated with the acquisition of pro-fibrotic cellular phenotypes. In this review, we explore the roles of redox mechanisms that promote and perpetuate fibrosis in the context of cellular senescence and aging

    Mechanisms of pulmonary fibrosis: role of activated myofibroblasts and NADPH oxidase

    Get PDF
    A common feature of pathological fibrosis involving the lung and other organs is the persistent activation of myofibroblasts in injured tissues. Recent evidence supports the role of a member of the NADPH oxidase (NOX) gene family, NOX4, in myofibroblast differentiation, matrix synthesis and contractility. Additionally, NOX4 may contribute directly or indirectly to alveolar epithelial cell death, while myofibroblasts themselves acquire an apoptosis-resistant phenotype. Thus, NOX4 may be responsible for the cardinal features of progressive fibrosis - myofibroblast activation and epithelial cell dysrepair. Therapeutic targeting of NOX4 is likely to be effective in progressive cases of fibrosis involving multiple organs

    Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts

    Full text link
    Cell‐cell signaling roles for reactive oxygen species (ROS) generated in response to growth factors/cytokines in nonphagocytic cells are not well defined. In this study, we show that fibroblasts isolated from lungs of patients with idiopathic pulmonary fibrosis (IPF) generate extracellular hydrogen peroxide (H2O2) in response to the multifunctional cytokine, transforming growth factor‐β1 (TGF‐β1). In contrast, TGF‐β1 stimulation of small airway epithelial cells (SAECs) does not result in detectable levels of extracellular H2O2. IPF fibroblasts independently stimulated with TGF‐β1 induce loss of viability and death of overlying SAECs when cocultured in a compartmentalized Transwell system. These effects on SAECs are inhibited by the addition of catalase to the coculture system or by the selective enzymatic blockade of H2O2 production by IPF fibroblasts. IPF fibroblasts heterogeneously express α‐smooth muscle actin stress fibers, a marker of myofibroblast differentiation. Cellular localization of H2O2 by a fluorescent‐labeling strategy demonstrated that extracellular secretion of H2O2 is specific to the myofibroblast phenotype. Thus, myofibroblast secretion of H2O2 functions as a diffusible death signal for lung epithelial cells. This novel mechanism for intercellular ROS signaling may be important in physiological/pathophysiological processes characterized by regenerating epithelial cells and activated myofibroblasts.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154383/1/fsb2fj042882fje.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154383/2/fsb2fj042882fje-sup-0001.pd

    Heme metabolism genes Downregulated in COPD Cachexia.

    Get PDF
    IntroductionCachexia contributes to increased mortality and reduced quality of life in Chronic Obstructive Pulmonary Disease (COPD) and may be associated with underlying gene expression changes. Our goal was to identify differential gene expression signatures associated with COPD cachexia in current and former smokers.MethodsWe analyzed whole-blood gene expression data from participants with COPD in a discovery cohort (COPDGene, N = 400) and assessed replication (ECLIPSE, N = 114). To approximate the consensus definition using available criteria, cachexia was defined as weight-loss > 5% in the past 12 months or low body mass index (BMI) (< 20 kg/m2) and 1/3 criteria: decreased muscle strength (six-minute walk distance < 350 m), anemia (hemoglobin < 12 g/dl), and low fat-free mass index (FFMI) (< 15 kg/m2 among women and < 17 kg/m2 among men) in COPDGene. In ECLIPSE, cachexia was defined as weight-loss > 5% in the past 12 months or low BMI and 3/5 criteria: decreased muscle strength, anorexia, abnormal biochemistry (anemia or high c-reactive protein (> 5 mg/l)), fatigue, and low FFMI. Differential gene expression was assessed between cachectic and non-cachectic subjects, adjusting for age, sex, white blood cell counts, and technical covariates. Gene set enrichment analysis was performed using MSigDB.ResultsThe prevalence of COPD cachexia was 13.7% in COPDGene and 7.9% in ECLIPSE. Fourteen genes were differentially downregulated in cachectic versus non-cachectic COPD patients in COPDGene (FDR < 0.05) and ECLIPSE (FDR < 0.05).DiscussionSeveral replicated genes regulating heme metabolism were downregulated among participants with COPD cachexia. Impaired heme biosynthesis may contribute to cachexia development through free-iron buildup and oxidative tissue damage

    Pathogenetic mechanisms in usual interstitial pneumonia/idiopathic pulmonary fibrosis

    Full text link
    Idiopathic pulmonary fibrosis (IPF) is a progressive, usually fatal, form of interstitial lung disease characterized by failure of alveolar re-epithelialization, persistence of fibroblasts/myofibroblasts, deposition of extracellular matrix, and distortion of lung architecture which ultimately results in respiratory failure. Clinical IPF is associated with a histopathological pattern of usual interstitial pneumonia (UIP) on surgical lung biopsy. Therapy for this disease with glucocorticoids and other immunomodulatory agents is largely ineffective and recent trials of newer anti-fibrotic agents have been disappointing. While the inciting event(s) leading to the initiation of scar formation in UIP remain unknown, recent advances in our understanding of the mechanisms underlying both normal and aberrant wound healing have shed some light on pathogenetic mechanisms that may play significant roles in this disease. Unlike other fibrotic diseases of the lung, such as those associated with collagen vascular disease, occupational exposure, or chemotherapeutic agents, UIP is not associated with a significant inflammatory response; rather, dysregulated epithelial–mesenchymal interactions predominate. Identification of pathways crucial to fibrogenesis might offer potentially novel therapeutic targets to slow or halt the progression of IPF. This review focuses on evolving concepts of cellular and molecular mechanisms in the pathogenesis of UIP/IPF. Copyright © 2003 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34486/1/1446_ftp.pd

    The contrasting chemical reactivity of potent isoelectronic iminopyridine and azopyridine osmium(ii) arene anticancer complexes

    Get PDF
    A wide variety of steric and electronic features can be incorporated into transition metal coordination complexes, offering the prospect of rationally-designed therapeutic agents with novel mechanisms of action. Here we compare the chemical reactivity and anticancer activity of organometallic OsII complexes [Os(η6-arene)(XY)Z]PF6 where arene = p-cymene or biphenyl, XY = N,N′-chelated phenyliminopyridine or phenylazopyridine derivatives, and Z = Cl or I. The X-ray crystal structure of [Os(η6-p-cym)(Impy-OH)I]PF6·0.5CH2Cl2·H2O (Impy-OH = 4-[(2-pyridinylmethylene)amino]-phenol) is reported. Like the azopyridine complexes we reported recently (Dalton Trans., 2011, 40, 10553–10562), some iminopyridine complexes are also potently active towards cancer cells (nanomolar IC50 values). However we show that, unlike the azopyridine complexes, the iminopyridine complexes can undergo aquation, bind to the nucleobase guanine, and oxidize coenzyme nicotine adenine dinucleotide (NADH). We report the first detection of an Os-hydride adduct in aqueous solution by 1H NMR (−4.2 ppm). Active iminopyridine complexes induced a dramatic increase in the levels of reactive oxygen species (ROS) in A549 lung cancer cells. The anticancer activity may therefore involve interference in the redox signalling pathways in cancer cells by a novel mechanism

    Evaluation of Dynamic Cell Processes and Behavior Using Video Bioinformatics Tools

    Get PDF
    Just as body language can reveal a person’s state of well-being, dynamic changes in cell behavior and morphology can be used to monitor processes in cultured cells. This chapter discusses how CL-Quant software, a commercially available video bioinformatics tool, can be used to extract quantitative data on: (1) growth/proliferation, (2) cell and colony migration, (3) reactive oxygen species (ROS) production, and (4) neural differentiation. Protocols created using CL-Quant were used to analyze both single cells and colonies. Time-lapse experiments in which different cell types were subjected to various chemical exposures were done using Nikon BioStations. Proliferation rate was measured in human embryonic stem cell colonies by quantifying colony area (pixels) and in single cells by measuring confluency (pixels). Colony and single cell migration were studied by measuring total displacement (distance between the starting and ending points) and total distance traveled by the colonies/cells. To quantify ROS production, cells were pre-loaded with MitoSOX Red™, a mitochondrial ROS (superoxide) indicator, treated with various chemicals, then total intensity of the red fluorescence was measured in each frame. Lastly, neural stem cells were incubated in differentiation medium for 12 days, and time lapse images were collected daily. Differentiation of neural stem cells was quantified using a protocol that detects young neurons. CLQuant software can be used to evaluate biological processes in living cells, and the protocols developed in this project can be applied to basic research and toxicological studies, or to monitor quality control in culture facilities

    Role of Nox4 and Nox2 in Hyperoxia-Induced Reactive Oxygen Species Generation and Migration of Human Lung Endothelial Cells

    Full text link
    Abstract In vascular endothelium, the major research focus has been on reactive oxygen species (ROS) derived from Nox2. The role of Nox4 in endothelial signal transduction, ROS production, and cytoskeletal reorganization is not well defined. In this study, we show that human pulmonary artery endothelial cells (HPAECs) and human lung microvascular endothelial cells (HLMVECs) express higher levels of Nox4 and p22phox compared to Nox1, Nox2, Nox3, or Nox5. Immunofluorescence microscopy and Western blot analysis revealed that Nox4 and p22phox, but not Nox2 or p47phox, are localized in nuclei of HPAECs. Further, knockdown of Nox4 with siRNA decreased Nox4 nuclear expression significantly. Exposure of HPAECs to hyperoxia (3-24h) enhanced mRNA and protein expression of Nox4, and Nox4 siRNA decreased hyperoxia-induced ROS production. Interestingly, Nox4 or Nox2 knockdown with siRNA upregulated the mRNA and protein expression of the other, suggesting activation of compensatory mechanisms. A similar upregulation of Nox4 mRNA was observed in Nox2 2/ko mice. Downregulation of Nox4, or pretreatment with N-acetylcysteine, attenuated hyperoxia-induced cell migration and capillary tube formation, suggesting that ROS generated by Nox4 regulate endothelial cell motility. These results indicate that Nox4 and Nox2 play a physiological role in hyperoxia-induced ROS production and migration of ECs. Antioxid. Redox Signal. 11, 747-764.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78121/1/ars.2008.2203.pd
    corecore