24 research outputs found

    Screening of Sunflower Genotypes for Reaction to Alternaria Leaf Blight Disease across Multi-environments using Pooled Analysis

    Get PDF
    Sunflower (Helianthus annuus L.) is an oilseed crop with potential health benefits as a source of oil and dietary fiber. The productivity of sunflower is hampered by both biotic and abiotic stresses caused due to climate changes. So far, the available gene pool is having moderately resistant lines. In the present study, we evaluated two screening methods by artificially challenging the plants with the causative agent A. helianthi. Significant changes in disease severity have been observed across 160 pre-breeding lines of sunflower, including the susceptible check, Morden in three different seasons. Among the160 pre-breeding lines derived from a mutant population of sunflower cv. Morden, 6.25 and 5.63 % of lines showed less leaf blight disease incidence under in vivo and in vitro environments respectively. Moreover, 44.38 % of the sunflower pre breeding lines demonstrated field tolerance with disease severity in the scale of 5. The promising accessions evaluated in our studies by whole plant assay method and detached leaf technique includes KSFI 19, KSFI 24, KSFI 147, KSFI 56, KSFI 120, KSFI 88, KSFI 152, KSFI 51 and KSFI 115. Therefore, these sunflower lines, could be employed for introgression of resistance genes against leaf blight disease in sunflower cultivars through marker assisted breeding strategies

    Assessment of variability parameters and diversity of panicle architectural traits associated with yield in rice (Oryza sativa L.)

    Get PDF
    The rice panicle, a pivotal reproductive structure, signifies the transition from vegetative to reproductive growth in plants. Comprising components such as the rachis, primary and secondary branches, seed quantities and branch lengths, panicle architecture profoundly influences grain production. This study delves into the diversity of panicle architecture traits and scrutinizes variability parameters across 69 distinct rice genotypes. Our findings underscore substantial variations in panicle architecture traits among genotypes. Particularly noteworthy are traits with the highest coefficient of variation (CV%), encompassing the count of secondary branches, single plant yield, productive tillers per plant, seeds per secondary branch and panicle weight. Correlation analysis reveals robust positive connections between panicle weight, the number of filled grains per panicle, 1000-grain weight and single plant yield. The number of secondary branches exhibits the most substantial phenotypic coefficient of variation (PCV%) at 47.14%, accompanied by a genotypic coefficient of variation (GCV%) of 43.57%. Traits such as days to 50% flowering, plant height and number of filled grains per panicle manifest high heritability (97.04%, 91.24% and 76.22% respectively) and notable genetic advancement (23.11%, 39.62% and 47.49%). The principal component analysis identifies the primary component (PC1) as the principal contributor to variance. Biplot analysis accentuates positive correlations between attributes like the number of filled grains per panicle, panicle length, plant height, primary branch count, panicle weight, seeds per primary branch and the number of secondary branches with single plant yield. By employing Mahalanobis D2 statistics, the classification of genotypes into 6 distinct clusters reveals clusters III and IV as distinguished by their significant inter-cluster and intra-cluster distances. This comprehensive analysis unveils the potential for harnessing panicle architecture traits to enhance grain production and advances our comprehension of intricate relationships within diverse rice genotypes

    Seed-Borne Probiotic Yeasts Foster Plant Growth and Elicit Health Protection in Black Gram (Vigna mungo L.)

    Get PDF
    Black gram is one of the most indispensable components of the world food basket and the growth and health of the crop get influenced by biotic and abiotic factors. Beneficial phyto-microbes are one among them that influence the crop growth, more particularly the seed borne microbes are comparatively beneficial, that they pass from generation to generation and are associated with the plants from establishment to development. In the present study, twenty seed-borne yeasts were characterized and tested for growth promotion of black gram and their antagonism against black gram phytopathogens. Two yeasts, Pichia kudriavzevii POY5 and Issatchenkia terricola GRY4, produced indole acetic acid (IAA), siderophore, 1-amino cyclopropane-1-carboxylic acid deaminase (ACCD), and plant defense enzymes. They solubilized phosphate and zinc and fixed atmospheric nitrogen. Inoculation of these two yeast isolates and Rhizobium BMBS1 improved the seed germination, physiological parameters and yield of black gram. Inoculation of Rhizoctonia solani-challenged plants with plant growth-promoting yeasts, resulted in the synthesis of defense-related enzymes such as peroxidases (POD), chitinases, catalase (CAT), and polyphenol oxidases (PPO). Thus, the seed-borne yeasts, Pichia kudriavzevii POY5 and Issatchenkia terricola GRY4, could be used as plant probiotics for black gram

    Seed-Borne Probiotic Yeasts Foster Plant Growth and Elicit Health Protection in Black Gram (Vigna mungo L.)

    Get PDF
    Black gram is one of the most indispensable components of the world food basket and the growth and health of the crop get influenced by biotic and abiotic factors. Beneficial phyto-microbes are one among them that influence the crop growth, more particularly the seed borne microbes are comparatively beneficial, that they pass from generation to generation and are associated with the plants from establishment to development. In the present study, twenty seed-borne yeasts were characterized and tested for growth promotion of black gram and their antagonism against black gram phytopathogens. Two yeasts, Pichia kudriavzevii POY5 and Issatchenkia terricola GRY4, produced indole acetic acid (IAA), siderophore, 1-amino cyclopropane-1-carboxylic acid deaminase (ACCD), and plant defense enzymes. They solubilized phosphate and zinc and fixed atmospheric nitrogen. Inoculation of these two yeast isolates and Rhizobium BMBS1 improved the seed germination, physiological parameters and yield of black gram. Inoculation of Rhizoctonia solani-challenged plants with plant growth-promoting yeasts, resulted in the synthesis of defense-related enzymes such as peroxidases (POD), chitinases, catalase (CAT), and polyphenol oxidases (PPO). Thus, the seed-borne yeasts, Pichia kudriavzevii POY5 and Issatchenkia terricola GRY4, could be used as plant probiotics for black gram

    Bioprospecting thermophilic glycosyl hydrolases, from hot springs of Himachal Pradesh, for biomass valorization

    No full text
    Abstract The harnessing of biocatalysts from extreme environment hot spring niche for biomass conversion is significant and promising owing to the special characteristics of extremozymes attributed by intriguing biogeochemistry and extreme conditions of these environments. Hence, in the present study 38 bacterial isolates obtained from hot springs of Manikaran (~ 95 °C), Kalath (~ 50 °C) and Vasist (~ 65 °C) of Himachal Pradesh were screened for glycosyl hydrolases by in situ enrichment technique using lignocellulosic biomass (LCB). Based on their hydrolytic potential 5 isolates were selected and they were Bacillus tequilensis (VCB1, VCB2 and VSDB4), and B. licheniformis (KBFB2 and KBFB3). Cellulolytic activity assayed by growth under submerged fermentation showed that B. tequilensis VCB1 had maximum FPA activity (3.38 IU ml−1) in 48 h, while B. licheniformis KBFB3 excelled for endoglucanase (EGA of 4.81 IU ml−1 in 24 h) and cellobiase (0.71 IU ml−1 in 48 h) activities. Among all the thermophilic biocatalysts evaluated, highest exoglucanase (0.06 IU ml−1) activity was observed in B. tequilensis VSDB4 while endoglucanase of B. licheniformis KBFB3 showed optimum specific activity at pH 7 and 70 °C. Further, the presence of celS, celB and xlnB genes in the isolates suggest their possible role in biomass conversion. Protein profiling by SDS-PAGE analysis revealed that cellulase isoforms migrated with molecular masses of 75 kDa. The endoglucanase activity of promising strain B. licheniformis KBFB3 was enhanced in the presence of Ca2+, mercaptoethanol and sodium hypochlorite whereas moderately inhibited by Cu2+, Zn2+, urea, SDS and H2O2. The results of this study indicate scope for the possible development of novel biocatalysts with multifunctional thermostable glycosyl hydrolases from hot springs for efficient hydrolysis of the complex lignocellulosic biomass into simple sugars and other derived bioproducts leading to biomass valorization

    Determination and production of antimicrobial compounds by aspergillus clavatonanicus strain mj31, an endophytic fungus from mirabilis jalapa l. using uplc-esi-ms/ms and td-gc-ms analysis

    No full text
    Endophytic fungi associated with medicinal plants are reported as potent producers of diverse classes of secondary metabolites. In the present study, an endophytic fungi, Aspergillus clavatonanicus strain MJ31, exhibiting significant antimicrobial activity was isolated from roots of Mirabilis jalapa L., was identified by sequencing three nuclear genes i.e. internal transcribed spacers ribosomal RNA (ITS rRNA), 28S ribosomal RNA (28S rRNA) and translation elongation factor 1-alpha (EF 1 alpha). Ethyl acetate extract of strain MJ31 displayed significant antimicrobial potential against Bacillus subtilis, followed by Micrococccus luteus and Staphylococcus aureus with minimum inhibitory concentrations (MIC) of 0.078, 0.156 and 0.312 mg/ml respectively. In addition, the strain was evaluated for its ability to synthesize bioactive compounds by the amplification of polyketide synthase (PKS) and non ribosomal peptide synthetase (NRPS) genes. Further, seven antibiotics (miconazole, ketoconazole, fluconazole, ampicillin, streptomycin, chloramphenicol, and rifampicin) were detected and quantified using UPLC-ESI-MS/MS. Additionally, thermal desorption-gas chromatography mass spectrometry (TD-GC-MS) analysis of strain MJ31 showed the presence of 28 volatile compounds. This is the first report on A. clavatonanicus as an endophyte obtained from M. jalapa. We conclude that A. clavatonanicus strain MJ31 has prolific antimicrobial potential against both plant and human pathogens and can be exploited for the discovery of new antimicrobial compounds and could be an alternate source for the production of secondary metabolites

    Determination and production of antimicrobial compounds by aspergillus clavatonanicus strain mj31, an endophytic fungus from mirabilis jalapa l. using uplc-esi-ms/ms and td-gc-ms analysis

    No full text
    Endophytic fungi associated with medicinal plants are reported as potent producers of diverse classes of secondary metabolites. In the present study, an endophytic fungi, Aspergillus clavatonanicus strain MJ31, exhibiting significant antimicrobial activity was isolated from roots of Mirabilis jalapa L., was identified by sequencing three nuclear genes i.e. internal transcribed spacers ribosomal RNA (ITS rRNA), 28S ribosomal RNA (28S rRNA) and translation elongation factor 1-alpha (EF 1 alpha). Ethyl acetate extract of strain MJ31 displayed significant antimicrobial potential against Bacillus subtilis, followed by Micrococccus luteus and Staphylococcus aureus with minimum inhibitory concentrations (MIC) of 0.078, 0.156 and 0.312 mg/ml respectively. In addition, the strain was evaluated for its ability to synthesize bioactive compounds by the amplification of polyketide synthase (PKS) and non ribosomal peptide synthetase (NRPS) genes. Further, seven antibiotics (miconazole, ketoconazole, fluconazole, ampicillin, streptomycin, chloramphenicol, and rifampicin) were detected and quantified using UPLC-ESI-MS/MS. Additionally, thermal desorption-gas chromatography mass spectrometry (TD-GC-MS) analysis of strain MJ31 showed the presence of 28 volatile compounds. This is the first report on A. clavatonanicus as an endophyte obtained from M. jalapa. We conclude that A. clavatonanicus strain MJ31 has prolific antimicrobial potential against both plant and human pathogens and can be exploited for the discovery of new antimicrobial compounds and could be an alternate source for the production of secondary metabolites

    Seed-Borne Probiotic Yeasts Foster Plant Growth and Elicit Health Protection in Black Gram (Vigna mungo L.)

    No full text
    Black gram is one of the most indispensable components of the world food basket and the growth and health of the crop get influenced by biotic and abiotic factors. Beneficial phyto-microbes are one among them that influence the crop growth, more particularly the seed borne microbes are comparatively beneficial, that they pass from generation to generation and are associated with the plants from establishment to development. In the present study, twenty seed-borne yeasts were characterized and tested for growth promotion of black gram and their antagonism against black gram phytopathogens. Two yeasts, Pichia kudriavzevii POY5 and Issatchenkia terricola GRY4, produced indole acetic acid (IAA), siderophore, 1-amino cyclopropane-1-carboxylic acid deaminase (ACCD), and plant defense enzymes. They solubilized phosphate and zinc and fixed atmospheric nitrogen. Inoculation of these two yeast isolates and Rhizobium BMBS1 improved the seed germination, physiological parameters and yield of black gram. Inoculation of Rhizoctonia solani-challenged plants with plant growth-promoting yeasts, resulted in the synthesis of defense-related enzymes such as peroxidases (POD), chitinases, catalase (CAT), and polyphenol oxidases (PPO). Thus, the seed-borne yeasts, Pichia kudriavzevii POY5 and Issatchenkia terricola GRY4, could be used as plant probiotics for black gram

    Synergistic Modulation of Seed Metabolites and Enzymatic Antioxidants Tweaks Moisture Stress Tolerance in Non-Cultivated Traditional Rice Genotypes during Germination

    No full text
    Traditional rice landraces are treasures for novel genes to develop climate-resilient cultivars. Seed viability and germination determine rice productivity under moisture stress. The present study evaluated 100 rice genotypes, including 85 traditional landraces and 15 improved cultivars from various agro-ecological zones of Tamil Nadu, along with moisture-stress-susceptible (IR 64) and moisture-stress-tolerant (IR 64 Drt1) checks. The landraces were screened over a range of osmotic potentials, namely (−) 1.0 MPa, (−) 1.25 MPa and (−) 1.5 MPa, for a period of 5 days in PEG-induced moisture stress. Physio-morphological traits, such as rate of germination, root and shoot length, vigor index, R/S ratio and relative water content (RWC), were assessed during early moisture stress at the maximum OP of (−) 1.5 MPa. The seed macromolecules, phytohormones (giberellic acid, auxin (IAA), cytokinin and abscisic acid), osmolytes and enzymatic antioxidants (catalase and superoxide dismutase) varied significantly between moisture stress and control treatments. The genotype Kuliyadichan registered more IAA and giberellic acid (44% and 35%, respectively, over moisture-stress-tolerant check (IR 64 Drt1), whereas all the landraces showed an elevated catalase activity, thus indicating that the tolerant landraces effectively eliminate oxidative damages. High-performance liquid chromatography analysis showed a reduction in cytokinin and an increase in ABA level under induced moisture stress. Hence, the inherent moisture-stress tolerance of six traditional landraces, such as Kuliyadichan, Rajalakshmi, Sahbhagi Dhan, Nootripathu, Chandaikar and Mallikar, was associated with metabolic responses, such as activation of hydrolytic enzymes, hormonal crosstalk, ROS signaling and antioxidant enzymes (especially catalase), when compared to the susceptible check, IR 64. Hence, these traditional rice landraces can serve as potential donors for introgression or pyramiding moisture-stress-tolerance traits toward developing climate-resilient rice cultivars

    Enhancement of disease resistance, growth potential, and photosynthesis in tomato (Solanum lycopersicum) by inoculation with an endophytic actinobacterium, Streptomyces thermocarboxydus strain BPSAC147.

    No full text
    Biotic stresses in plants have a significant impact on agricultural productivity. In the present study, in vivo experiments were conducted to determine the physiological responses of tomato (Solanum lycopersicum L.) seedlings by inoculation with an endophytic actinobacterium, Streptomyces thermocarboxydus isolate BPSAC147 under greenhouse conditions. Further, photochemical quantum yield of photosystem II (PSII) (Fv/Fm), photochemical quenching (qP) and non-photochemical (NPQ) were calculated in seedlings inoculated with S. thermocarboxydus (T1) and were compared with control (T0) plants. Furthermore, the electron transport rate (ETR) of PSII exhibited a significant increase in T1 plants, relative to T0 plants. These results indicate that inoculation of tomato seedlings with S. thermocarboxydus had a positive effect on the process of photosynthesis, resulting in enhanced chlorophyll fluorescence parameters due to increased ETR in the thylakoid membrane. GC-MS analysis showed significant differences in the volatile compounds in the different treatments performed under greenhouse conditions. The present study suggests that S. thermocarboxydus can be used as new biocontrol agent to control Fusarium wilt in tomato crops and enhance productivity by enhancing photosynthesis
    corecore