29 research outputs found

    Spread of artemisinin resistance in Plasmodium falciparum malaria.

    Get PDF
    BACKGROUND: Artemisinin resistance in Plasmodium falciparum has emerged in Southeast Asia and now poses a threat to the control and elimination of malaria. Mapping the geographic extent of resistance is essential for planning containment and elimination strategies. METHODS: Between May 2011 and April 2013, we enrolled 1241 adults and children with acute, uncomplicated falciparum malaria in an open-label trial at 15 sites in 10 countries (7 in Asia and 3 in Africa). Patients received artesunate, administered orally at a daily dose of either 2 mg per kilogram of body weight per day or 4 mg per kilogram, for 3 days, followed by a standard 3-day course of artemisinin-based combination therapy. Parasite counts in peripheral-blood samples were measured every 6 hours, and the parasite clearance half-lives were determined. RESULTS: The median parasite clearance half-lives ranged from 1.9 hours in the Democratic Republic of Congo to 7.0 hours at the Thailand-Cambodia border. Slowly clearing infections (parasite clearance half-life >5 hours), strongly associated with single point mutations in the "propeller" region of the P. falciparum kelch protein gene on chromosome 13 (kelch13), were detected throughout mainland Southeast Asia from southern Vietnam to central Myanmar. The incidence of pretreatment and post-treatment gametocytemia was higher among patients with slow parasite clearance, suggesting greater potential for transmission. In western Cambodia, where artemisinin-based combination therapies are failing, the 6-day course of antimalarial therapy was associated with a cure rate of 97.7% (95% confidence interval, 90.9 to 99.4) at 42 days. CONCLUSIONS: Artemisinin resistance to P. falciparum, which is now prevalent across mainland Southeast Asia, is associated with mutations in kelch13. Prolonged courses of artemisinin-based combination therapies are currently efficacious in areas where standard 3-day treatments are failing. (Funded by the U.K. Department of International Development and others; ClinicalTrials.gov number, NCT01350856.)

    Pf7: an open dataset of Plasmodium falciparum genome variation in 20,000 worldwide samples

    Get PDF
    We describe the MalariaGEN Pf7 data resource, the seventh release of Plasmodium falciparum genome variation data from the MalariaGEN network.  It comprises over 20,000 samples from 82 partner studies in 33 countries, including several malaria endemic regions that were previously underrepresented.  For the first time we include dried blood spot samples that were sequenced after selective whole genome amplification, necessitating new methods to genotype copy number variations.  We identify a large number of newly emerging crt mutations in parts of Southeast Asia, and show examples of heterogeneities in patterns of drug resistance within Africa and within the Indian subcontinent.  We describe the profile of variations in the C-terminal of the csp gene and relate this to the sequence used in the RTS,S and R21 malaria vaccines.  Pf7 provides high-quality data on genotype calls for 6 million SNPs and short indels, analysis of large deletions that cause failure of rapid diagnostic tests, and systematic characterisation of six major drug resistance loci, all of which can be freely downloaded from the MalariaGEN website

    Rapid decline in the susceptibility of Plasmodium falciparum to dihydroartemisinin-piperaquine in the south of Vietnam

    No full text
    Background Artemisinin resistant Plasmodium falciparum has emerged in the countries of the Greater Mekong sub‑region posing a serious threat to global malaria elimination efforts. The relationship of artemisinin resistance to treatment failure has been unclear. Methods In annual studies conducted in three malaria endemic provinces in the south of Vietnam (Binh Phuoc, Ninh Thuan and Gia Lai) between 2011 and 2015, 489 patients with uncomplicated P. falciparum malaria were enrolled in detailed clinical, parasitological and molecular therapeutic response assessments with 42 days follow up. Patients received the national recommended first‑line treatment dihydroartemisinin‑piperaquine for three days. Results Over the 5 years the proportion of patients with detectable parasitaemia on day 3 rose steadily from 38 to 57% (P andlt; 0.001). In Binh Phuoc province, the parasite clearance half‑life increased from 3.75 h in 2011 to 6.60 h in 2015 (P andlt; 0.001), while treatment failures rose from 0% in 2012 and 2013, to 7% in 2014 and 26% in 2015 (P andlt; 0.001). Recrudescence was associated with in vitro evidence of artemisinin and piperaquine resistance. In the treatment failures cases of 2015, all 14 parasite isolates carried the C580Y Pfkelch 13 gene, marker of artemisinin resistance and 93% (13/14) of them carried exoE415G mutations, markers of piperaquine resistance. Conclusions In the south of Vietnam recent emergence of piperaquine resistant P. falciparum strains has accelerated the reduced response to artemisinin and has led to treatment failure rates of up to 26% to dihydroartemisinin‑piperaquine, Vietnam’s current first‑line ACT. Alternative treatments are urgently needed

    K13-propeller mutations in Plasmodium falciparum populations in malaria endemic regions of Vietnam from 2009 to 2016

    No full text
    The spread of artemisinin resistant P. falciparum compromises the therapeutic efficacy of artemisinin combination therapies (ACT) and is considered the greatest threat to current global initiatives to control and eliminate malaria. This is particularly relevant for Vietnam, where dihydroartemisinin-piperaquine (DP) is the recommended ACT for P. falciparum The propeller domain gene of K13, a molecular marker of artemisinin resistance, was sequenced successfully in 1060 P. falciparum isolates collected at 3 malaria hotspots in Vietnam between 2009 and 2016. Eight K13 propeller mutations (Thr474Ile, Tyr493His, Arg539Thr, Ile543Thr, Pro553Leu, Val568Gly, Pro574Leu and Cys580Tyr) were found, including several that have been validated as artemisinin resistant markers. The prevalences of K13 mutations were 29% (222/767), 6% (11/188) and 43% (45/105) in in Binh Phuoc, Ninh Thuan and Gia Lai respectively. Cys580Tyr became the dominant genotype in recent years comprising 79.1% (34/43) of isolates in Binh Phuoc and 63% (17/27) in Gia Lai Province. K13 mutations were associated with reduced ring stage susceptibility to dihydroartemisinin (DHA) in-vitro and prolonged parasite clearance in-vivo. An analysis of haplotypes flanking K13 suggested the presence of multiple strains with Cys580Tyr, rather than a single strain expanding across the three sites

    K13-propeller mutations in Plasmodium falciparum populations in malaria endemic regions of Vietnam from 2009 to 2016

    No full text
    The spread of artemisinin resistant P. falciparum compromises the therapeutic efficacy of artemisinin combination therapies (ACT) and is considered the greatest threat to current global initiatives to control and eliminate malaria. This is particularly relevant for Vietnam, where dihydroartemisinin-piperaquine (DP) is the recommended ACT for P. falciparum The propeller domain gene of K13, a molecular marker of artemisinin resistance, was sequenced successfully in 1060 P. falciparum isolates collected at 3 malaria hotspots in Vietnam between 2009 and 2016. Eight K13 propeller mutations (Thr474Ile, Tyr493His, Arg539Thr, Ile543Thr, Pro553Leu, Val568Gly, Pro574Leu and Cys580Tyr) were found, including several that have been validated as artemisinin resistant markers. The prevalences of K13 mutations were 29% (222/767), 6% (11/188) and 43% (45/105) in in Binh Phuoc, Ninh Thuan and Gia Lai respectively. Cys580Tyr became the dominant genotype in recent years comprising 79.1% (34/43) of isolates in Binh Phuoc and 63% (17/27) in Gia Lai Province. K13 mutations were associated with reduced ring stage susceptibility to dihydroartemisinin (DHA) in-vitro and prolonged parasite clearance in-vivo. An analysis of haplotypes flanking K13 suggested the presence of multiple strains with Cys580Tyr, rather than a single strain expanding across the three sites

    Effects of Amino Acids on Malarial Heme Crystallization

    Get PDF
    To gain insight into the mechanism of malarial hemozoin formation and to explore various biological groups for screening novel antimalarial drugs, we examined the effects of amino acids on the formation of β-hematin (BH), which is a synthetic heme crystal structurally identical to hemozoin, in vitro. Our results showed that BH formation was significantly inhibited by basic amino acids (arginine, lysine, and histidine), probably due to the abilities of these amino acids to complex with heme. The results suggest an involvement in the improvement of the blood-schizonticidal activity of 8-quinolinamine when conjugated with basic amino acids. In addition, cysteine also inhibited BH formation, possibly due to its ability to reduce heme iron or decompose heme in acidic conditions. In contrast, BH formation was enhanced by amino acids with high hydrophobicity values (leucine, isoleucine, valine, methionine, and phenylalanine), with the exception of tryptophan at high temperature but was not affected in Tween-induced BH formation under normal physiological conditions. The present results can lead to further research on the development of new antimalarials by conjugating these amino acids, especially basic amino acids, with other substances, or by forming complex or small peptides that could have special effects on BH formation

    Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated <i>Plasmodium falciparum</i> malaria: a multicentre, open-label, randomised clinical trial.

    No full text
    Background:Artemisinin and partner-drug resistance in Plasmodium falciparum are major threats to malaria control and elimination. Triple artemisinin-based combination therapies (TACTs), which combine existing co-formulated ACTs with a second partner drug that is slowly eliminated, might provide effective treatment and delay emergence of antimalarial drug resistance. Methods: In this multicentre, open-label, randomised trial, we recruited patients with uncomplicated P falciparum malaria at 18 hospitals and health clinics in eight countries. Eligible patients were aged 2-65 years, with acute, uncomplicated P falciparum malaria alone or mixed with non-falciparum species, and a temperature of 37·5°C or higher, or a history of fever in the past 24 h. Patients were randomly assigned (1:1) to one of two treatments using block randomisation, depending on their location: in Thailand, Cambodia, Vietnam, and Myanmar patients were assigned to either dihydroartemisinin-piperaquine or dihydroartemisinin-piperaquine plus mefloquine; at three sites in Cambodia they were assigned to either artesunate-mefloquine or dihydroartemisinin-piperaquine plus mefloquine; and in Laos, Myanmar, Bangladesh, India, and the Democratic Republic of the Congo they were assigned to either artemether-lumefantrine or artemether-lumefantrine plus amodiaquine. All drugs were administered orally and doses varied by drug combination and site. Patients were followed-up weekly for 42 days. The primary endpoint was efficacy, defined by 42-day PCR-corrected adequate clinical and parasitological response. Primary analysis was by intention to treat. A detailed assessment of safety and tolerability of the study drugs was done in all patients randomly assigned to treatment. This study is registered at ClinicalTrials.gov, NCT02453308, and is complete. Findings: Between Aug 7, 2015, and Feb 8, 2018, 1100 patients were given either dihydroartemisinin-piperaquine (183 [17%]), dihydroartemisinin-piperaquine plus mefloquine (269 [25%]), artesunate-mefloquine (73 [7%]), artemether-lumefantrine (289 [26%]), or artemether-lumefantrine plus amodiaquine (286 [26%]). The median age was 23 years (IQR 13 to 34) and 854 (78%) of 1100 patients were male. In Cambodia, Thailand, and Vietnam the 42-day PCR-corrected efficacy after dihydroartemisinin-piperaquine plus mefloquine was 98% (149 of 152; 95% CI 94 to 100) and after dihydroartemisinin-piperaquine was 48% (67 of 141; 95% CI 39 to 56; risk difference 51%, 95% CI 42 to 59; p Interpretation: Dihydroartemisinin-piperaquine plus mefloquine and artemether-lumefantrine plus amodiaquine TACTs are efficacious, well tolerated, and safe treatments of uncomplicated P falciparum malaria, including in areas with artemisinin and ACT partner-drug resistance

    Artemisinin resistance in the malaria parasite, Plasmodium falciparum, originates from its initial transcriptional response

    No full text
    The emergence and spread of artemisinin-resistant Plasmodium falciparum, first in the Greater Mekong Subregion (GMS), and now in East Africa, is a major threat to global malaria elimination ambitions. To investigate the artemisinin resistance mechanism, transcriptome analysis was conducted of 577 P. falciparum isolates collected in the GMS between 2016–2018. A specific artemisinin resistance-associated transcriptional profile was identified that involves a broad but discrete set of biological functions related to proteotoxic stress, host cytoplasm remodelling, and REDOX metabolism. The artemisinin resistance-associated transcriptional profile evolved from initial transcriptional responses of susceptible parasites to artemisinin. The genetic basis for this adapted response is likely to be complex

    Evolution of multidrug resistance in plasmodium falciparum: A longitudinal study of genetic resistance markers in the greater mekong subregion

    No full text
    Increasing resistance in Plasmodium falciparum to artemisinins and their artemisinin combination therapy (ACT) partner drugs jeopardizes effective antimalarial treatment. Resistance is worst in the Greater Mekong subregion. Monitoring genetic markers of resistance can help to guide antimalarial therapy. Markers of resistance to artemisinins (PfKelch mutations), mefloquine (amplification of P. falciparum multidrug resistance-1 [PfMDR1]), and piperaquine (PfPlasmepsin2/3 amplification and specific P. falciparum chloroquine resistance transporter [PfCRT] mutations) were assessed in 6,722 P. falciparum samples from Vietnam, Lao People's Democratic Republic (PDR), Cambodia, Thailand, and Myanmar between 2007 and 2019. Against a high background prevalence of PfKelch mutations, PfMDR1 and PfPlasmepsin2/3 amplification closely followed regional drug pressures over time. PfPlasmepsin2/3 amplification preceded piperaquine resistance- associated PfCRT mutations in Cambodia and reached a peak prevalence of 23/28 (82%) in 2015. This declined to 57/156 (38%) after first-line treatment was changed from dihydroartemisinin-piperaquine to artesunate-mefloquine (ASMQ) between 2014 and 2017. The frequency of PfMDR1 amplification increased from 0/293 (0%) between 2012 and 2017 to 12/156 (8%) in 2019. Amplification of PfMDR1 and PfPlasmepsin2/3 in the same parasites was extremely rare (4/6,722 [0.06%]) and was dispersed over time. The mechanisms conferring mefloquine and piperaquine resistance may be counterbalancing. This supports the development of ASMQ plus piperaquine as a triple artemisinin combination therapy
    corecore