12 research outputs found

    Transcriptional Profiles of Skeletal Muscle Associated With Increasing Severity of White Striping in Commercial Broilers

    Get PDF
    Development of the white striping (WS) abnormality adversely impacts overall quality of broiler breast meat. Its etiology remains unclear. This study aimed at exploring transcriptional profiles of broiler skeletal muscles exhibiting different WS severity to elucidate molecular mechanisms underlying the development and progression of WS. Total RNA was isolated from pectoralis major of male 7-week-old Ross 308 broilers. The samples were classified as mild (n = 6), moderate (n = 6), or severe (n = 4), based on number and thickness of the white striations on the meat surface. The transcriptome was profiled using a chicken gene expression microarray with one-color hybridization technique. Gene expression patterns of each WS severity level were compared against each other; hence, there were three comparisons: moderate vs. mild (C1), severe vs. moderate (C2), and severe vs. mild (C3). Differentially expressed genes (DEGs) were identified using the combined criteria of false discovery rate 64 0.05 and absolute fold change 651.2. Differential expression of 91, 136, and 294 transcripts were identified in C1, C2, and C3, respectively. There were no DEGs in common among the three comparisons. Based on pathway analysis, the enriched pathways of C1 were related with impaired homeostasis of macronutrients and small biochemical molecules with disrupted Ca2+-related pathways. Decreased abundance of the period circadian regulator suggested the shifted circadian phase when moderate WS developed. The enriched pathways uniquely obtained in C2 were RNA degradation, Ras signaling, cellular senescence, axon guidance, and salivary secretion. The DEGs identified in those pathways might play crucial roles in regulating cellular ion balances and cell-cycle arrest. In C3, the pathways responsible for phosphatidylinositol 3-kinase-Akt signaling, p53 activation, apoptosis, and hypoxia-induced processes were modified. Additionally, pathways associated with a variety of diseases with the DEGs involved in regulation of [Ca2+], collagen formation, microtubule-based motor, and immune response were identified. Eight pathways were common to all three comparisons (i.e., calcium signaling, Ras-associated protein 1 signaling, ubiquitin-mediated proteolysis, vascular smooth muscle contraction, oxytocin signaling, and pathway in cancer). The current findings support the role of intracellular ion imbalance, particularly Ca2+, oxidative stress, and impaired programmed cell death on WS progression

    Insights Into Transcriptome Profiles Associated With Wooden Breast Myopathy in Broilers Slaughtered at the Age of 6 or 7 Weeks

    Get PDF
    open9siThis research was financially supported by Cluster and Program Management, National Science and Technology Development Agency (Thailand; project number P15-50668), and by Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation (Thailand; P20-50946 and P21-50165).Transcriptomes associated with wooden breast (WB) were characterized in broilers at two different market ages. Breasts (Pectoralis major) were collected, 20-min postmortem, from male Ross 308 broilers slaughtered at 6 and 7 weeks of age. The breasts were classified as “non-WB” or “WB” based on palpation hardness scoring (non-WB = no abnormal hardness, WB = consistently hardened). Total RNA was isolated from 16 samples (n = 3 for 6 week non-WB, n = 3 for 6 week WB; n = 5 for 7 week non-WB, n = 5 for 7 week WB). Transcriptome was profiled using a chicken gene expression microarray with one-color hybridization technique, and compared between non-WB and WB samples of the same age. Among 6 week broilers, 910 transcripts were differentially expressed (DE) (false discovery rate, FDR < 0.05). Pathway analysis underlined metabolisms of glucose and lipids along with gap junctions, tight junction, and focal adhesion (FA) signaling as the top enriched pathways. For the 7 week broilers, 1,195 transcripts were identified (FDR < 0.05) with regulation of actin cytoskeleton, mitogen-activated protein kinase (MAPK) signaling, protein processing in endoplasmic reticulum and FA signaling highlighted as the enriched affected pathways. Absolute transcript levels of eight genes (actinin-1 – ACTN1, integrin-linked kinase – ILK, integrin subunit alpha 8 – ITGA8, integrin subunit beta 5 – ITGB5, protein tyrosine kinase 2 – PTK2, paxillin – PXN, talin 1 – TLN1, and vinculin – VCL) of FA signaling pathway were further elucidated using a droplet digital polymerase chain reaction. The results indicated that, in 6 week broilers, ITGA8 abundance in WB was greater than that of non-WB samples (p < 0.05). Concerning 7 week broilers, greater absolute levels of ACTN1, ILK, ITGA8, and TLN1, accompanied with a reduced ITGB5 were found in WB compared with non-WB (p < 0.05). Transcriptional modification of FA signaling underlined the potential of disrupted cell-cell communication that may incite aberrant molecular events in association with development of WB myopathy.openMalila, Yuwares; Uengwetwanit, Tanaporn; Thanatsang, Krittaporn V.; Arayamethakorn, Sopacha; Srimarut, Yanee; Petracci, Massimiliano; Soglia, Francesca; Rungrassamee, Wanilada; Visessanguan, WonnopMalila, Yuwares; Uengwetwanit, Tanaporn; Thanatsang, Krittaporn V.; Arayamethakorn, Sopacha; Srimarut, Yanee; Petracci, Massimiliano; Soglia, Francesca; Rungrassamee, Wanilada; Visessanguan, Wonno

    Differential expression patterns of genes associated with metabolisms, muscle growth and repair in Pectoralis major muscles of fast- and medium-growing chickens

    Get PDF
    The aim of this study was to investigate the expression of genes related to muscle growth, hypoxia and oxidative stress responses, a multi-substrate serine/threonine-protein kinase (AMPK) and AMPK-related kinases, carbohydrate metabolism, satellite cells activities and fibro- adipogenic progenitors (FAPs) in fast-growing (FG) (n = 30) and medium-growing (MG) chickens (n = 30). Pectoralis major muscles were collected at 7d, 14d, 21d, 28d, 35d and 42d of age. According to their macroscopic features, the samples from FG up to 21d of age were classified as unaffected, while all samples collected at an older age exhibited macroscopic features ascribable to white striping and/or wooden breast abnormalities. In contrast, MG samples did not show any feature associated to muscle disorders. The absolute transcript abundance of 33 target genes was examined by droplet digital polymerase chain reaction. The results showed differential gene expression profiles between FG and MG chickens at different ages. While most genes remained unchanged in MG chickens, the expression patterns of several genes in FG were significantly affected by age. Genes encoding alpha 1, alpha 2, beta 2 and gamma 3 isoforms of AMPK, as well as AMPK-related kinases, were identified as differentially expressed between the two strains. The results support the hypothesis of oxidative stress-induced muscle damage with metabolic alterations in FG chickens. An increased expression of ANXA2, DES, LITAF, MMP14, MYF5 and TGFB1 was observed in FG strain. The results suggest the occurrence of dysregulation of FAP proliferation and differentiation occurring during muscle repair. FAPs could play an important role in defining the proliferation of connective tissue (fibrosis) and deposition of intermuscular adipose tissue which represents distinctive traits of muscle abnormalities. Overall, these findings demonstrate that dysregulated molecular processes associated with myopathic lesions in chickens are strongly influenced by growth rate, and, to some extent, by age

    Nutritional Properties and Oxidative Indices of Broiler Breast Meat Affected by Wooden Breast Abnormality

    No full text
    Wooden breast (WB) abnormality adversely impacts the quality of chicken meat and has been linked with oxidative stress. In this study, breast samples were taken from carcasses of 7-week-old Ross 308 broilers 20-min and 24-h postmortem. Five WB and seven non-WB control samples were assigned based on palpatory hardness (non-WB = no unusual characteristics and WB = focal or diffused hardness). WB exhibited lower contents of protein and the amino acids, i.e., isoleucine, leucine and valine, lighter surface color, lower shear force, greater drip loss and altered mineral profiles (p ≤ 0.05). Despite no difference in lipid oxidation, a greater degree of protein oxidation was found in the WB meat (p ≤ 0.05). Absolute transcript abundances of superoxide dismutase, hypoxia inducible factor 1 alpha and pyruvate dehydrogenase kinase 1 were greater in WB (p ≤ 0.05), whereas lactate dehydrogenase A expression was lower in WB (p ≤ 0.05). The findings support an association between oxidative stress and the altered nutritional and technological properties of chicken meat in WB

    Lysine Depletion during Different Feeding Phases: Effects on Growth Performances and Meat Quality of Broiler Chickens

    Get PDF
    The present study aimed at assessing the impact of lysine restriction performed during different feeding phases on growth performances, meat quality traits and technological properties as well as on the incidence and severity of breast muscle abnormalities. For this purpose, a total of 945 one-day-old Ross 308 male chicks was randomly divided into three experimental groups: CONT, fed a four feeding phases commercial diet, GRW I, and GRW I + II fed CONT diet with the depletion of synthetic lysine during grower I and grower I and II feeding phases, respectively. Productive performances were recorded throughout the whole rearing cycle and the incidence of breast muscle growth-related abnormalities assessed at slaughter (49 d) on 280 breasts/group. Quality traits and technological properties of breast meat were measured on a total of 54 Pectoralis major muscles. Lysine restriction only marginally affected the productive performances and the quality parameters of breast meat. The increased (p < 0.05) solubility of the protein fraction along with the remarkably higher (p < 0.05) anserine content found in GRW I + II suggests an increased energy requirement in the pectoral muscles belonging to lysine-restricted birds and supports the hypothesis of a reduced protein synthesis taking place within these muscles

    Absolute transcript abundance of genes involved in muscle growth in <i>Pectoralis major</i> muscle of fast- and medium-growing chickens at different ages.

    No full text
    The genes include (a) insulin-like growth factor 1 (IGF1), (b) myogenic differentiation 1 (MYOD1), (c) myogenic factor 5 (MYF5) and (d) myostatin (MSTN). Markers and error bars depict mean value and standard deviation (n = 5). Upper case letters indicate significant differences among medium-growing chickens. Asterisks and sharps indicate significant differences between the two strains at the same age. #p<0.1, *p<0.05, **p<0.01.</p

    Absolute transcript abundance of genes encoding different isoforms of 5’-adenosine monophosphate-activated protein kinase (AMPK) in <i>Pectoralis major</i> muscle of fast- and medium-growing chickens at different ages.

    No full text
    The AMPK isoforms include (a) ɑ1 isoform (PRKAA1), (b) ɑ2 isoform (PRKAA2), (c) β1 isoform (PRKAB1), (d) β2 (PRKAB2), (e) γ1 isoform (PRKAG1), (f) γ2 isoform (PRKAG2), and (g) γ3 isoform (PRKAG3). Markers and error bars depict mean and standard deviation (n = 5). Lower case letters indicate significant differences among fast-growing chickens. Upper case letters indicate significant differences among medium-growing chickens. Asterisks indicate significant differences between the two strains at the same age. *p<0.05, **p<0.01.</p

    Absolute transcript abundance of genes involved in carbohydrate metabolism in <i>Pectoralis major</i> muscle of fast- and medium-growing chickens at different ages.

    No full text
    The genes include (a) lactate dehydrogenase isoform A (LDHA), (b) lactate dehydrogenase isoform B (LDHB), and (c) 6-phosphofructo-2-kinase/fructose2,6-biphosphatase 4 (PFKFB4). Markers and error bars depict mean and standard deviation (n = 5). Lower case letters indicate significant differences among fast-growing chickens. Asterisks and sharp signs indicate significant differences between the two strains at the same age. #p<0.1, *p<0.05, **p<0.01.</p

    Absolute transcript abundance of genes associated with activities of satellite cells and fibro-adipogenic progenitors in <i>Pectoralis major</i> muscle of fast- and medium-growing chickens at different ages.

    No full text
    The genes include (a) annexin A2 (ANXA2), (b) desmin (DES), (c) vimentin (VIM), (d) transforming growth factor beta 1 (TGFB1), (e) platelet-derived growth factor-alpha subunit (PDGFA), (f) platelet-derived growth factor receptor alpha subunit (PDGFRA), (g) Matrix metalloproteinase-14 (MMP14), (h) bone morphogenetic protein 1 (BMP1) and (i) lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF). Markers and error bars depict mean and standard deviation (n = 5). Lower case letters indicate significant differences among fast-growing chickens. Upper case letters indicate significant differences among medium-growing chickens. Asterisks indicate significant differences between the two strains at the same age. *p<0.05, **p<0.01, ***p<0.0001.</p
    corecore