19 research outputs found

    Inhibition of Akt Attenuates RPO-Induced Cardioprotection

    Get PDF
    Previous studies have shown that red palm oil (RPO) supplementation protected rat hearts against ischaemia-reperfusion injury. Evidence from these studies suggested that Akt may be partly responsible for the observed protection. The aim of the current study was therefore to prove or refute the involvement of Akt in the RPO-induced cardioprotection by administration of a specific Akt inhibitor (A6730). Male Wistar rats were randomly divided into 2 groups: a control group receiving standard rat chow and an experimental group receiving standard rat chow plus 2 mL RPO for six weeks. Hearts were excised and mounted on the Langendorff perfusion system. Functional recovery was documented. A different set of hearts were freeze-clamped to assess total and phosphorylation status of Akt. Another set of hearts were subjected to the same perfusion conditions with addition of A6730. Hearts from this protocol were freeze-clamped and assessed for total and phospho-Akt. RPO improved functional recovery which was associated with increased phosphorylation of Akt on Ser473 and Thr308 residues. Blockade of Akt phosphorylation caused poor functional recovery. For the first time, these results prove that Akt plays an important role in the RPO-induced cardioprotection

    The combination of red palm oil and rooibos show anti-inflammatory effects in rats

    Get PDF
    BACKGROUND: Red palm oil (RPO) and rooibos have been shown to exhibit cardioprotective properties. RPO is rich in essential fatty acids and fat soluble antioxidants while rooibos contains polyphenolic compounds with a unique composition of flavonoids. They exert their biological effects in different cellular compartments. Therefore the combination of these two natural food compounds has the potential to enhance the spectrum of available dietary antioxidants in different cellular compartments, which could result in an enhanced protection against certain pathological conditions such as inflammation. METHODS: Male Wistar rats weighing 150-200 g were supplemented with RPO, rooibos or their combination for 28 days. The Langendorff system and the lipoposaccharide (LPS)-induced inflammatory model were used to establish if RPO and rooibos, when supplemented alone or in combination, will reverse the negative effects of LPS on cardiac function at baseline. The effect of dietary intervention was also investigated on modulation of pro-inflammatory and anti-inflammatory cytokines in plasma and myocardial tissue. RESULTS AND DISCUSSION: The LPS resulted in induction of systemic inflammation as evidenced by increased levels of IL-1beta in plasma of LPS-treated rats compared to their non-treated control counterparts. Dietary supplementation and LPS treatment did not have an effect on baseline cardiac functional parameters. However, the elevation of IL-1beta levels in plasma of LPS-induced rats consuming either RPO or rooibos alone were paralleled with increased levels of the anti-inflammatory cytokine, IL-10. The combination of rooibos and RPO was associated with enhanced endogenous production of myocardial IL-10 in LPS-induced rats. CONCLUSION: The results of this study indicate that RPO and rooibos when supplemented individually showed anti-inflammatory effect at systemic level while their combination exhibited an enhanced anti-inflammatory effect in the myocardial tissue. Therefore, the findings in the current study argue that the combination of these two natural food substances could be beneficial in clinically relevant conditions where inflammation plays a role

    The therapeutic potential of the novel angiotensin-converting enzyme 2 in the treatment of coronavirus disease-19

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of coronavirus disease 2019 (COVID-19). This virus has become a global pandemic with unprecedented mortality and morbidity along with attendant financial and economic crises. Furthermore, COVID-19 can easily be transmitted regardless of religion, race, sex, or status. Globally, high hospitalization rates of COVID-19 patients have been reported, and billions of dollars have been spent to contain the pandemic. Angiotensin-converting enzyme (ACE) 2 is a receptor of SARS-CoV-2, which has a significant role in the entry of the virus into the host cell. ACE2 is highly expressed in the type II alveolar cells of the lungs, upper esophagus, stratified epithelial cells, and other tissues in the body. The diminished expressions of ACE2 have been associated with hypertension, arteriosclerosis, heart failure, chronic kidney disease, and immune system dysregulation. Overall, the potential drug candidates that could serve as ACE2 activators or enhance the expression of ACE2 in a disease state, such as COVID-19, hold considerable promise in mitigating the COVID-19 pandemic. This study reviews the therapeutic potential and pharmacological benefits of the novel ACE2 in the management of COVID-19 using search engines, such as Google, Scopus, PubMed, and PubMed Central.http://www.veterinaryworld.orgdm2022Paraclinical Science

    Effect of rooibos and red palm oil supplementation, alone or in combination, on cardiac function after exposure to hypertension and inflammation in an ischaemial/reperfusion injury model

    No full text
    Thesis submitted in fulfilment of the requirement for the degree Doctor of Technologiae (Biomedical Technology) in the Faculty of Health and Wellness Sciences at the Cape Peninsula University of Technology Supervisor: Prof J van Rooyen Co-supervisor: Prof JL Marnewick Bellville October 2013Cardiovascular disease (CVD) is without a doubt one of the most challenging health issues of our time and accounts for the highest number of deaths in both developed and developing countries. Despite the huge strides that have been achieved in the diagnosis and therapeutic intervention of CVD, the disease burden still remains enormous. Therefore, this calls for novel and innovative interventions to curb the surge of CVD. The use of plant based food with bioactive phytochemicals,has a great potential to reduce the incidence of CVD, specifically in resource-strained countries. Red palm oil (RPO) and the indigenous herbal tea, rooibos have previously been shown to exhibit potential cardioprotective effects. Their health promoting properties have largely been attributed to their antioxidant and anti-inflammatory activities and emerging evidence also showed that they have the potential to modulate cell signalling events. Substancial scientific evidence proposes oxidative stress and inflammation to play an important role in the pathogenesis of cardiovascular disease. Hence, natural plant extracts such as RPO and rooibos could be recommended as adjuvants to clinical therapy to reduce the morbidity and mortality associated with CVD. This thesis reports on three studies investigating the cardiovascular protective effects that chronic feeding of either RPO, rooibos or their combination have on 1) antioxidant enzymes and the NO-cGMP pathway in myocardial tissue of spontaneous hypertensive rats, 2) the modulation of systemic and myocardial inflammation and 3) the myocardial ischaemic/reperfusion tolerance in a rat model of lypopolysaccharide induced inflammation. The aim of the first study was to investigate the effect of RPO on cardiac function in sponteneously hypertensive rats. The role of the nitric oxide cyclic-guanosine monophosphate(NO-cGMP) pathway, (as determined by the nitric oxide (NOS) activity) and the antioxidant defence system (selected antioxidant enzymes) were also investigated. Cardiac function was monitored at stabilization and reperfusion using the Langendorff perfusion system. Antioxidant enzymes were determined from left ventricular tissue, while total NOS activity was determined in the aorta and left ventricular tissue. The results show that RPO offered cardiac protection as evidenced by improved left ventricular developed pressure (LVDevP), maximum velocity of pressure rise (+dp/dt) max and fall (-dp/dt) max during reperfusion in sponteneously hypertensive rats (SHR) compared to their control counterparts. Improved function in SHR was associated with increased myocardial superoxide dismutase 2 (SOD2) protein expression compared to the normotensive rats. There was differential modulation of the NOS activity by RPO, an increase in NOS activity was observed in the aorta while a reduction in the activity of NOS was observed in the left ventricular tissue of both RPO supplemented normotensive and hypertensive rats compared to their respective control groups. These results argue a role for elevated NO production in the aorta for endothelial function maintenance. Increased SOD2 protein might lead to reduced oxidative stress. Thus, NO-cGMP pathway and antioxidant defense systems synergistically acted to restore cardiovascular function in SHR. The aim of the second study was to investigate the effect of RPO and rooibos supplementation on the modulation of systemic and myocardial inflammation in a rat model. As RPO and rooibos contain different types of antioxidants which reside and exert their biological effects in different cellular compartments, the combination of these two natural food compounds has the potential to enhance the spectrum of available dietary antioxidants in different cellular compartments, which could result in a better protection against certain pathological conditions such as inflammation. The Langendorff system and the lypopolysaccharide (LPS)-induced inflammatory model were used to determine if RPO and rooibos could protect against the negative effect of LPS-induced inflammation on baseline cardiac function. Both inflammation and dietary supplementation did not have any effect on baseline cardiac functional parameters. Our results show that administration of LPS resulted in elevated plasma levels of IL-1β in supplemented and non-supplemented rats indicating that an inflammatory response was triggered in the LPS-treated rats. However, this increase in IL-1β was counteracted by concurrent elevation of plasma IL-10 in LPS-induced rats consuming either rooibos or RPO alone. Furthermore the combination of RPO and rooibos enhanced myocardial IL-10 levels in LPS-induced rats. This data shows a difference in response to LPS injection between the myocardium and the systemic circulation. The results indicate that the combination of these two natural food substances exhibit potential anti-inflammatory properties which could be beneficial in clinically relevant conditions where inflammation plays a role. Having shown that dietary intervention with RPO and rooibos had the potential to modulate the inflammatory response in the model of inflammation at basal conditions, we then proceeded to the third study to specifically establish if dietary RPO when supplemented alone will improve functional recovery and reduce infarct size in LPS-treated hearts. The Langendorff perfusion system was employed for determination of cardiac function and infarct size. The roles of NFkB, p38 MAPK and the myocardial antioxidant defence systems were investigated as potential mechanisms of protection. LPS-treatment caused significant increases in myocardial IL-1 β indicating that inflammation was induced. However, the levels of myocardial IL-10 was reduced in LPS-treated hearts compared to the non-treated hearts. Intervention with dietary RPO resulted in improved functional recovery and reduced infarct size, in both healthy hearts and in the LPS-treatment group. The RPO-induced cardio-protection was associated with increases in myocardial protein expression of the antioxidant enzymes, SOD1, SOD2, GPX1 as well as increased p38 phosphorylation during reperfusion. LPS treatment increased myocardial protein expression of NFkB p65 which was reversed by RPO supplementation. Reduction of myocardial NFkB protein expression, increased p38 phosphorylation and elevated mitochondrial antioxidant (SOD2 and GPX1) as well as cytosolic enzymes (SOD 1) are proposed as potential mechanisms underlying the RPO-induced cardio-protection in this model. Based on these study results, for the first time, having included vasculature aspects in the cardio-protective effects of RPO we have shown that the NO-cGMP pathway and antioxidant defense systems may act synergistically to restore cardiovascular function in spontaneously hypertensive rats. Results from the second study also provide the first scientific evidence that RPO in combination with rooibos (a flavonoid rich endemic herbal tea) could have potential anti-inflammatory activities at systemic as well as myocardial level, which may be beneficial in clinically relevant conditions where inflammation plays a role. From the third study it can be concluded that dietary RPO improved myocardial tolerance to ischaemia-reperfusion injury in a model of inflammation

    Inhibition of Akt Attenuates RPO-Induced Cardioprotection

    No full text
    NatuurwetenskappeFisiologiese WetenskappePlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]

    Inhibition of Akt Attenuates RPO-Induced Cardioprotection

    No full text
    Previous studies have shown that red palm oil (RPO) supplementation protected rat hearts against ischaemia-reperfusion injury. Evidence from these studies suggested that Akt may be partly responsible for the observed protection. The aim of the current study was therefore to prove or refute the involvement of Akt in the RPO-induced cardioprotection by administration of a specific Akt inhibitor (A6730). Male Wistar rats were randomly divided into 2 groups: a control group receiving standard rat chow and an experimental group receiving standard rat chow plus 2 mL RPO for six weeks. Hearts were excised and mounted on the Langendorff perfusion system. Functional recovery was documented. A different set of hearts were freeze-clamped to assess total and phosphorylation status of Akt. Another set of hearts were subjected to the same perfusion conditions with addition of A6730. Hearts from this protocol were freeze-clamped and assessed for total and phospho-Akt. RPO improved functional recovery which was associated with increased phosphorylation of Akt on Ser473 and Thr308 residues. Blockade of Akt phosphorylation caused poor functional recovery. For the first time, these results prove that Akt plays an important role in the RPO-induced cardioprotection

    Inhibition of Akt Attenuates RPO-Induced Cardioprotection

    Get PDF
    NatuurwetenskappeFisiologiese WetenskappePlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]

    Protective Effects of Rooibos (Aspalathus linearis) and/or Red Palm Oil (Elaeis guineensis) Supplementation on tert-Butyl Hydroperoxide-Induced Oxidative Hepatotoxicity in Wistar Rats

    No full text
    ArticleThe possible protective effects of an aqueous rooibos extract (Aspalathus linearis), red palm oil (RPO) (Elaeis guineensis), or their combination on tert-butyl-hydroperoxide-(t-BHP-)induced oxidative hepatotoxicity in Wistar rats were investigated. tert-butyl hydroperoxide caused a significant () elevation in conjugated dienes (CD) and malondialdehyde (MDA) levels, significantly () decreased reduced glutathione (GSH) and GSH : GSSG ratio, and induced varying changes in activities of catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase in the blood and liver. This apparent oxidative injury was associated with histopathological changes in liver architecture and elevated levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH). Supplementation with rooibos, RPO, or their combination significantly () decreased CD and MDA levels in the liver and reduced serum level of ALT, AST, and LDH. Likewise, changes observed in the activities of antioxidant enzymes and impairment in redox status in the erythrocytes and liver were reversed. The observed protective effects when rooibos and RPO were supplemented concomitantly were neither additive nor synergistic. Our results suggested that rooibos and RPO, either supplemented alone or combined, are capable of alleviating t-BHP-induced oxidative hepatotoxicity, and the mechanism of this protection may involve inhibition of lipid peroxidation and modulation of antioxidants enzymes and glutathione status.Cape Peninsula University of TechnologyOxidative Stress Research Centr

    Protective effects of rooibos (Aspalathus linearis) and/or red palm oil (Elaes guineensis) supplementation on tert-butyl hydroperoxide-induced oxidative hepatotoxicity in Wistar rats

    Get PDF
    The possible protective effects of an aqueous rooibos extract (Aspalathus linearis), red palm oil (RPO) (Elaeis guineensis), or their combination on tert-butyl-hydroperoxide-(t-BHP-)induced oxidative hepatotoxicity in Wistar rats were investigated. tert-butyl hydroperoxide caused a significant () elevation in conjugated dienes (CD) and malondialdehyde (MDA) levels, significantly () decreased reduced glutathione (GSH) and GSH : GSSG ratio, and induced varying changes in activities of catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase in the blood and liver. This apparent oxidative injury was associated with histopathological changes in liver architecture and elevated levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH). Supplementation with rooibos, RPO, or their combination significantly () decreased CD and MDA levels in the liver and reduced serum level of ALT, AST, and LDH. Likewise, changes observed in the activities of antioxidant enzymes and impairment in redox status in the erythrocytes and liver were reversed. The observed protective effects when rooibos and RPO were supplemented concomitantly were neither additive nor synergistic. Our results suggested that rooibos and RPO, either supplemented alone or combined, are capable of alleviating t-BHP-induced oxidative hepatotoxicity, and the mechanism of this protection may involve inhibition of lipid peroxidation and modulation of antioxidants enzymes and glutathione status
    corecore